
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2002

Neural network based iterative algorithms for
solving electromagnetic NDE inverse problems
Pradeep Ramuhalli
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Ramuhalli, Pradeep, "Neural network based iterative algorithms for solving electromagnetic NDE inverse problems " (2002).
Retrospective Theses and Dissertations. 403.
https://lib.dr.iastate.edu/rtd/403

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/403?utm_source=lib.dr.iastate.edu%2Frtd%2F403&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI films 

the text directly from the original or copy submitted. Thus, some thesis and 

dissertation copies are in typewriter face, while others may be from any type of 

computer printer. 

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleedthrough, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and continuing 

from left to right in equal sections with small overlaps. 

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6" x 9" black and white 

photographic prints are available for any photographs or illustrations appearing 

in this copy for an additional charge. Contact UMI directly to order. 

ProQuest Information and Learning 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 

800-521-0600 



www.manaraa.com



www.manaraa.com

Neural network based iterative algorithms for solving electromagnetic NDE inverse problems 

by 

Pradeep Ramuhalli 

A dissertation submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Major: Electrical Engineering (Communications and Signal Processing) 

Program of Study Committee: 
Lalita Udpa, Major Professor 

Satish Udpa 
Shanker Balasubramaniam 

James McCalley 
Fritz Keinert 

Iowa State University 

Ames, Iowa 

2002 

Copyright © Pradeep Ramuhalli, 2002. All rights reserved. 



www.manaraa.com

UMI Number 3051495 

Copyright 2002 by 
Ramuhalli, Pradeep 

All rights reserved. 

UMf 
UMI Microform 3051495 

Copyright 2002 by ProQuest Information and Learning Company. 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



www.manaraa.com

Graduate College 
Iowa State University 

This is to certify that the doctoral dissertation of 

Pradeep Ramuhalli 

has met the dissertation requirements of Iowa State University 

ommittee M ber 

Committee Member 

Committee Member 

iiberCommittee Member

Major Professor 

r^Mf r Forlné M r Pr ram 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

I l l  

TABLE OF CONTENTS 

LIST OF FIGURES v 

LIST OF TABLES ix 

ACKNOWLEDGEMENTS x 

ABSTRACT xi 

1. INTRODUCTION 1 

1.1. Inverse Problems in NDE 1 

1.2. Neural Network Based Iterative Inversion Algorithms 5 

1.3. Organization of this Dissertation 9 

2. NEURAL NETWORKS 10 

2.1. Regularization Theory 11 

2.2. Radial Basis Function Neural Networks 14 

2.3. Wavelet Basis Function Neural Networks 17 

3. ELECTROMAGNETIC NDE SIGNAL INVERSION USING NEURAL NETWORK 

FORWARD MODELS 24 

3.1. Results 28 

3.1.1. Inversion Results Using RBFNN 29 

3.1.2. Inversion Results Using WBFNN 33 

4. ELECTROMAGNETIC NDE SIGNAL INVERSION USING FEEDBACK NEURAL 

NETWORKS 38 

4.1. FBNN Training and Optimization 39 

4.2. Results and Discussions 43 



www.manaraa.com

iv 

5. THE FINITE ELEMENT NEURAL NETWORK AND ITS APPLICATION TO 

SIGNAL INVERSION 49 

5.1. The Finite Element Method 49 

5.2. The Finite Element Neural Network 52 

5.2.1. Incorporation of Boundaiy Conditions 56 

5.3. Forward and Inverse Problem Formulation Using FENN 59 

5.4. Advantages and Modifications 61 

5.5. Sensitivity Analysis of the Inverse Problem 62 

5.6. Results 76 

5.6.1. One Dimensional Problems - Forward Model Results 76 

5.6.2. One Dimensional Problems - Inverse Model Results 80 

5.6.3. Forward And Inverse Problems In Two Dimensions 86 

6. CONCLUSIONS AND FUTURE WORK 102 

APPENDDC. MAGNETIC FLUX LEAKAGE METHODS 104 

REFERENCES 106 



www.manaraa.com

LIST OF FIGURES 

Figure 1. A generic NDE system 2 

Figure 2. Systems approach to NDE 2 

Figure 3. Iterative inversion method for solving inverse problems 4 

Figure 4. The radial basis function neural network 15 

Figure 5. Multiresolution analysis 20 

Figure 6. The wavelet basis function neural network 21 

Figure 7. Dyadic center selection scheme 23 

Figure 8. Examples of defect profiles and MFL signals 30 

Figure 9. Performance of the RBFNN as a forward model 31 

Figure 10. Results of iterative inversion, RBFNN as forward model (2.6", 0.75" deep) 31 

Figure 11. Results of iterative inversion, RBFNN as forward model (6.2", 0.40" deep) 32 

Figure 12. Performance of RBFNN with noise for 2.6", 0.75" deep flaw (a) 5% noise, (b) 

15% noise 32 

Figure 13. Performance of RBFNN with noise for 6.2", 0.40" deep flaw (a) 5% noise (b) 

15% noise 33 

Figure 14. Performance of WBFNN as a forward model 35 

Figure 15. Results of iterative inversion, WBFNN as forward model (3.4", 0.85" deep) 35 

Figure 16. Results of iterative inversion, WBFNN as forward model (6.2", 0.40" deep) 36 

Figure 17. Performance of WBFNN with noise for 3.4", 0.85" deep flaw (a) 5% noise (b) 

15% noise 36 



www.manaraa.com

VI 

Figure 18. Performance of WBFNN with noise for 6.2", 0.40" deep flaw (a) 5% noise (b) 

15% noise 37 

Figure 19. Schematic of the feedback neural network approach (Prediction mode) 39 

Figure 20. Feedback neural network: Training mode 40 

Figure 21. Training results for the forward network 44 

Figure 22. Feedback neural network results (3.8", 0.35" deep) 45 

Figure 23. Feedback neural network result (4.2", 0.60" deep) 45 

Figure 24. Feedback neural network result (4.6", 0.35" deep) 46 

Figure 25. Inversion results for a 4.2" wide, 0.55" deep flaw (no noise) 47 

Figure 26. Inversion results for a 4.2" wide, 0.55" deep flaw (a) 5% noise, (b) 10% noise... 47 

Figure 27. Inversion results for a 1.4" wide, 0.20" deep flaw (no noise) 48 

Figure 28. Inversion results for a 1.4" wide, 0.20" deep flaw (a) 5% noise (b) 15% noise.... 48 

Figure 29. FEM domain discretization using two elements and four nodes 53 

Figure 30. The finite element neural network 57 

Figure 31. Comparison of analytical solution and FENN solution for Laplace's equation with 

K=1 77 

Figure 32. Comparison of analytical solution and FENN solution for Laplace's equation 

(K=5) 77 

Figure 33. Comparison of analytical, FEM and FENN solutions for Poisson s equation (p=-

10) 79 

Figure 34. Comparison of analytical, FEM and FENN solutions for Poisson s equation 

(f=10) 79 



www.manaraa.com

VII 

Figure 35. FENN inversion results for Poisson's equation with (a) initial solution £=x and 

(b) initial solution £=l+x 81 

Figure 36. Inversion result for Poisson's equation with initial solution (a) £=0.5 (b) 8=1 81 

Figure 37. Inversion result for Poisson's equation with (a) random initialization 1 (b) random 

initialization 2 82 

Figure 38. FENN inversion results for Poisson's equation with initial solution (a) e=l-x (b) e 

=2-x 82 

Figure 39. FENN inversion results for Laplace's equation with initialization (a) e =x (b) 

f=l+x 82 

Figure 40. Constrained inversion result with eleven nodes 84 

Figure 41. Error in the forcing function for an eleven node discretization 85 

Figure 42. Constrained inversion results for a 21 node discretization 85 

Figure 43. Error in the forcing function for a 21 node discretization 86 

Figure 44. Solution of forward problem for Problem I (a) Analytical (b) FEM (c) FENN (d) 

error between (a) and (c) 88 

Figure 45. Inverse problem solution for Problem I with an 1 lxl 1 discretization (a) Analytical 

value of ar(b) FENN inversion (c) Error between (a) and (b) 89 

Figure 46. Inversion results for Problem I with a 5x5 mesh (a) Analytical value of a(b) 

FENN inversion (c) Error between (a) and (b) 90 

Figure 47. Forward problem solutions for Problem II (a) Analytical) (b) FEM (c) FENN.... 93 

Figure 48. Inversion results for Problem II with an 1 lxl 1 mesh (a) Analytical value of or(b) 

FENN inversion (c) Error between (a) and (b) 94 



www.manaraa.com

VIII 

Figure 49. Solution for <f> (Problem III) (a) Analytical (b) FEM (c) FENN (d) error between 

(a) and (c) 95 

Figure 50. Inversion results for Problem III, ax with an 11x11 mesh (a) Analytical value (b) 

FENN inversion (c) Error between (a) and (b) 96 

Figure 51. Inversion results for Problem III, ay with an 1 lxl 1 mesh (a) Analytical value (b) 

FENN inversion (c) Error between (a) and (b) 97 

Figure 52. Shielded microstrip geometry (a) complete problem description (b) problem 

description using symmetry considerations 99 

Figure 53. Forward problem solutions for shielded microstrip problem (a) FEM (b) FENN 

(c) error between (a) and (b) 100 

Figure 54. Inversion result for a shielded microstrip (a) True solution for a(b) FENN 

inversion (c) error between (a) and (b) 101 



www.manaraa.com

ix 

LIST OF TABLES 

Table 1. Node-element connectivity array for the two-element mesh given in Figure 29 



www.manaraa.com

ACKNOWLEDGEMENTS 

This thesis would not have been possible without the help and support of several 

people. I would like to thank my major professor, Dr. Lalita Udpa, for her guidance and 

advice during the course of my graduate studies. I would also like to thank the members of 

my committee, Dr. Satish Udpa, Dr. Shanker Balasubramaniam, Dr. James McCalley and Dr. 

Fritz Keinert, for their guidance and support. In particular, I would like to thank Dr. Satish 

Udpa for the personal interest he has taken in my work, and for his advice and help. 

Thanks are also due to the members of the Materials Assessment Research Group for 

making my stay at Iowa State University an enjoyable experience. The students and staff 

affiliated with this group have always been ready with their help and advice. In particular, I 

would like to thank the group administrator, Mrs. Linda Clifford, for her advice, support and 

help during my stay here. I would also like to thank Dr. Robi Polikar, Dr. Mohammed Afzal 

and Dr. Jaejoon Kim for their helpful suggestions whenever I needed them. 

The graduate fellowship established by Takano Co. Ltd., Nagano, Japan at the 

Department of Electrical and Computer Engineering at Iowa State University was an 

important ingredient in making this thesis possible. I would like to take this opportunity to 

thank the Takano fellowship committee at Iowa State University and the president of Takano 

Co. Ltd., Mr. Horii, for the fellowship award. 

Finally, and most importantly, I would like to thank my parents and sister for their 

unwavering support during my (long) career as a student. They have always pushed me to 

attain higher goals, and my pursuit of a PhD would not have been possible without them. 



www.manaraa.com

xi 

ABSTRACT 

The solution of inverse problems is of interest in a variety of applications ranging 

from geophysical exploration to medical diagnosis and non-destructive evaluation (NDE). 

Electromagnetic methods are often used in the nondestructive inspection of conducting and 

ferromagnetic materials. A crucial problem in electromagnetic NDE is signal inversion 

wherein the defect parameters must be recovered from the measured signals. Iterative 

algorithms are commonly used to solve this inverse problem. Typical iterative inversion 

approaches use a numerical forward model to predict the measurement signal for a given 

defect profile. The desired defect profile can then be found by iteratively minimizing a cost 

function. The use of numerical models is computationally expensive, and therefore, 

alternative forward models need to be explored. This thesis proposes neural network based 

forward models in iterative inversion algorithms for solving inverse problems in NDE. 

This study proposes two different neural network based iterative inverse problem 

solutions. In addition, specialized neural networks forward models that closely model the 

physical processes in electromagnetic NDE are proposed and used in place of numerical 

forward models. The first approach uses basis function networks (radial basis function 

(RBFNN) and wavelet basis function (WBFNN)) to approximate the mapping from the 

defect space to the signal space. The trained networks are then used in an iterative algorithm 

to estimate the profile given the measurement signal. The second approach proposes the use 

of two networks in a feedback configuration. This approach stabilizes the solution process 

and provides a confidence measure of the inversion result. Furthermore, specialized finite 

element model based neural networks (FENN) are proposed to model the forward problem. 
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These networks are derived from conventional finite element models and offer several 

advantages over conventional numerical models as well as neural network based forward 

models. These neural networks are then applied in an iterative algorithm to solve the inverse 

problem. Results of applying these algorithms to several examples including synthetic 

magnetic flux leakage (MFL) data are presented. 
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1. INTRODUCTION 

Non-destructive evaluation (NDE) is the science of inspecting materials for flaws 

without compromising their usefulness. A generic NDE system is shown in Figure 1. An 

input transducer is used to couple energy into the test sample. The response of the material-

energy interaction is captured by means of a receiving transducer and the resulting signal is 

analyzed to determine the existence of a flaw in the specimen. A wide range of energy 

sources including electromagnetic, ultrasonic and x-rays have been used in different 

applications. Commonly used electromagnetic techniques for NDE include magnetic flux 

leakage and eddy current methods. 

The primary objective of NDE is to characterize the flaw based on the measurement 

signal. This can be accomplished using signal classification algorithms or alternately via 

algorithms for estimating flaw parameters given the measured signal. The problem of flaw 

characterization can be represented using a systems approach to NDE. 

1.1. Inverse Problems in NDE 

A typical NDE system can be represented by the linear model (Figure 2) where x(f) 

is the excitation source, y(t) is the probe measurement and H{a>) is the transfer function of 

the field/flaw interaction [1], Three classes of problems may be defined using this approach: 

(i) Given input x(t) and system H {a), determine the output y(t). 

(ii) Given input x(t) and output_y(f), determine H(to). 

(iii) Given system H {a) and the output y(t), determine x(/). 

The first case presents the forward problem while the second and third cases are 

related to inverse problems. The second problem is one of system identification and the third 
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is commonly referred to as deconvolution. In NDE, the forward problem involves estimating 

the measurement signal due to a flaw and applied input energy whereas inverse problems 

involve the estimation of defect parameters using information contained in the measurement 

signal. Defect parameters can range from simple estimates of equivalent length, width and 

depth to a full three-dimensional profile. 

An inverse problem is said to be well-posed in the sense of Hadamard if the solution 

satisfies three properties: 

(i) Existence 

Figure 1. A generic NDE system. 

*(f) 

/ / M  
y«) 

Figure 2. Systems approach to NDE. 
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(ii) Uniqueness and 

(iii) Continuity: the solution depends continuously on the input. 

The forward problem in general is well-posed and is solved analytically or by means of 

numerical modeling. In contrast, inverse problems in general are ill-posed, lacking both 

uniqueness and continuous dependence of the measured signals on defects. This has resulted 

in the development of a variety of solution techniques ranging from simple calibration 

procedures to other direct and iterative approaches [2]. These solution techniques can be 

divided into two broad categories: phenomenological and non-phenomenological approaches. 

The first class of approaches - non-phenomenological approaches - attempts to solve 

the inverse problem by using signal processing techniques. A survey of signal processing 

methods as applied to inverse problems in NDE is available in [2]. These methods typically 

range from simple calibration methods to the more recent procedures based on neural 

networks. Calibration curves are obtained by first generating a set of signals either 

experimentally or numerically for a range of defect parameter values. A family of calibration 

curves is obtained by plotting signal features such as peak values against defect parameters 

such as defect depth while holding other parameters constant. These curves are then used to 

predict defect parameters for a given signal. Direct solutions involve mapping the measured 

signal directly to the flaw parameters. An example of this is approach is the use of neural 

networks to map the measurement to the required defect profile. In this case, the problem is 

formulated as a function approximation problem and the underlying function mapping the 

input signal to the output (profile) is "learnt" by a neural network. 
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Experimental 
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Figure 3. Iterative inversion method for solving inverse problems. 

Phenomenological approaches can be direct or iterative. Iterative approaches typically 

employ a forward model that simulates the underlying physical process (Figure 3) [3]. The 

physical process in NDE is usually represented by means of differential or integral equations, 

and the corresponding forward model is typically a numerical model such as a finite element 

model. The algorithm starts with an initial estimate of the defect parameters and solves the 

corresponding forward problem to determine the signal. The error between the measured and 

predicted signals is minimized iteratively by updating the defect profile. When the error is 

below a pre-set threshold, the defect parameters represent the desired solution. 

Methods utilizing both phenomenological and non-phenomenological approaches 

have been reported extensively in literature [4]. Iterative techniques for inverse problems in 

NDE have been developed using numerical models [3,5] based on integral and differential 

formulations [6,7,8] to represent the forward process. In addition, various non-

phenomenological approaches have also been reported. For instance, Hwang et al report the 

use of a wavelet basis function neural network to learn the profile for a given MFL signal [9]. 
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However, all of these methods have certain drawbacks. Iterative methods using three-

dimensional numerical models are, in general, computationally intensive, and therefore have 

limited practical application. In addition, updating the defect profile is also difficult, since 

gradient-based approaches cannot be easily applied to solutions of numerical models such as 

finite element models. On the other hand, neural network based non-phenomenological 

techniques are open loop in nature and are capable of providing a confidence measure of the 

accuracy only during the training phase. In addition, non-phenomenological techniques suffer 

from the drawback that they cannot be used in cases where the solution is non-unique. 

The major objective of this study is the development of solutions to inverse problems 

in NDE that overcome the disadvantages of the conventional approaches. The proposed 

solutions are described below with a brief discussion of their advantages and disadvantages. 

In addition, we also compare the proposed solution methods to existing algorithms presented 

in the literature, and present the differences between the existing and proposed algorithms. 

1.2. Neural Network Based Iterative Inversion Algorithms 

In this study, we focus on developing solutions that try to incorporate the best components of 

both phenomenological and non-phenomenological approaches. Specifically, two different 

neural network based approaches to solving the inverse problem are proposed. Both 

approaches are iterative in nature and involve the use of neural networks as forward models. 

These approaches are 

1. Approach I: Neural network based iterative inversion: A single neural network is 

used instead of a numerical model as the forward model in the inversion approach 

shown in Figure 3. The advantages of this approach include its speed and simplicity 

as the forward model inherits many of the advantages of neural networks. Similar 
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approaches have been used in the past in sonar performance analysis, power system 

security assessment and control (a survey of iterative inversion algorithms and 

applications is given in [10]). However, the proposed approach is different since it 

uses radial basis function and wavelet basis function neural networks to model the 

forward process, as opposed to multilayer perceptron neural networks used in the 

literature. 

2. Approach H: Feedback Neural Networks: This approach is a modification of 

Approach 1, and uses two neural networks in feedback configuration, with one neural 

network modeling the forward problem while the other models the inverse problem. 

This approach allows us to incorporate the underlying physics of the problem in the 

forward model, thus providing an accurate solution. The suggested technique is also 

capable of incremental learning, provides an online measure for accuracy of the 

defect estimate, and is computationally efficient. 

The major drawback of both Approach I and Approach II is that the performance of 

the neural networks depends on the data used in training and testing. Mathematically, each of 

the neural networks approximates the function mapping the input to the output, and as long 

the test data is similar to the training data, the network can interpolate between the training 

data points to obtain a reasonable prediction. However, when the test signal is no longer 

similar to the training data, the network is forced to extrapolate and the performance is seen 

to degrade. For example, a network trained with rectangular defects will not predict with high 

accuracy when a signal from a circular defect is given as input. This may be a disadvantage 

in NDE signal inversion, where the shape of the flaw is not known a priori. Hence, there is a 

need for developing neural networks that can "extrapolate". 
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An easy way around this difficulty is to ensure that the training database has enough 

data to cover a diverse set of signals. However, this is difficult to ensure in practice, and even 

if we can generate data from all possible defect profiles, the database and associated storage 

costs would be enormous. Alternatively, we have to consider the design of neural networks 

that are capable of extrapolation. Extrapolation methods are discussed extensively in the 

literature ([11, 12, 13, 14]), but the design of an extrapolation neural network involves 

several issues. For instance, there are no methods for ensuring that the error in the network 

prediction is within reasonable bounds during the extrapolation procedure. 

Model based methods for extrapolation use numerical models in an iterative 

approach. These models are capable of correctly predicting the signal given any reasonable 

defect profile, since they solve the underlying governing equations. However, numerical 

models are computationally intensive, which limits their application. An ideal solution 

therefore would be to combine the power of numerical models with the computational speed 

of neural networks, i.e., to create neural networks that are capable of solving the underlying 

partial differential equations in an electromagnetic NDE problem. Specifically, we are 

interested in designing neural networks that are closely related to a numerical model such as 

the finite element model. This finite element neural network (FENN) can then be used as the 

forward model in either Approach I or Approach II to solve the inverse problem. Using a 

numerical model in a neural network framework allows parallel implementation, thus 

resulting in potential savings in computational effort. Furthermore, the neural network would 

require a minimal amount of training and therefore, the iterative algorithm would be faster, 

and not be training database dependent like regular neural networks. 
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Finite element based neural networks have not been explored extensively in the 

literature. A large number of publications refer to the finite element neural network as a 

neural network that has been trained using FEM data (for instance, [15,16]). One of the few 

finite element neural network formulations that have been reported has been by Takeuchi and 

Kosugi [17]. This approach is based on error minimization and the neural network is 

designed from the energy functional derived during the finite element method. Furthermore, 

the network is designed to solve the forward problem, and must be modified to solve the 

inverse problem. Other reports of finite element neural network combinations are either 

similar to the Takeuchi method [18,19] or use Hopfield neural networks to solve the forward 

problem [20]. The use of Hopfield networks makes it difficult to solve the inverse problem, 

especially if derivatives need to be computed in the inversion procedure. Such networks are 

therefore not considered in this study. An alternative neural network approach to solving 

differential equations is proposed in [21]. Here, the solution to a differential equation is 

written as a sum of two terms, with one term having no adjustable parameters and a second 

term with adjustable parameters. These parameters are modeled using a neural network, and 

a training procedure is used to determine the optimal parameter set. Boundary conditions are 

taken into account when the two terms are formed. The drawback of this approach is that it is 

limited to rectangular domains. In addition, the neural network requires a training stage. 

Our proposed approach is different in that we derive the neural network from the 

point of view of the inverse problem. The neural network architecture that is eventually 

developed also makes it easy to solve the forward problem. The structure of the neural 

network is also simpler than those reported in the literature, making it easier to implement in 

parallel in both hardware and software. Furthermore, the neural network is not limited to a 
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specific type of domain, and does not require any training. In fact, the FENN weights are 

determined solely by the differential equation and associated boundary conditions — an 

advantage in solving inverse problems. 

i J. Organization of this Dissertation 

This thesis is organized as follows. Chapter 2 presents a brief introduction to neural 

networks. This section contains a description of the radial basis function neural network 

(RBFNN) and the wavelet basis function neural network (WBFNN), along with an 

introduction to function approximation. The relationship between these neural networks and 

function approximation theory is also shown. Chapters 3 and 4 present the proposed 

approaches to solving inverse problems, namely, a simple neural network based iterative 

inversion algorithm and a feedback neural network algorithm respectively. The necessary 

update equations along with a complete description of the algorithm are presented. Results of 

applying these algorithms are also presented in the corresponding sections. This is followed 

by a description of the proposed finite element neural network in Chapter 5, along with initial 

results. Chapter 5 contains an introduction to finite element models, the formulation of the 

FENN, and the necessary update equations for solving the forward and inverse problems. An 

analysis of the sensitivity of the FENN to measurement errors is also provided in Chapter 5. 

Finally, Chapter 6 summarizes the various approaches and presents ideas for future work. In 

addition, a brief introduction to magnetic flux leakage theory is provided in the Appendix. 
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2. NEURAL NETWORKS 

Neural networks are connectionist models proposed in an attempt to mimic the 

function of the human brain. A neural network consists of a large number of simple 

processing elements called neurons (or nodes) [22,23]. Neurons implement simple functions 

and are massively interconnected by means of weighted interconnections. These weights, 

determined by means of a training process, determine the functionality of the neural network. 

The training process uses a training database to determine the network parameters (weights). 

The functionality of the neural network is also determined by its topology. Most 

networks have a large number of neurons, with the neurons arranged in layers. In addition to 

input and output layers, there are usually layers of neurons that are not directly connected to 

either the input or the output, called hidden layers. The corresponding nodes are referred to 

as hidden nodes. Hidden layers give the network the ability to approximate complex, 

nonlinear functions. 

The advantages of using neural networks are numerous: neural networks are learning 

machines that can learn any arbitrary functional mapping between input and output, they are 

fast machines and can be implemented in parallel, either in software or in hardware. In fact, 

the computational complexity of neural networks is polynomial in the number of neurons 

used in the network. Parallelism also brings with it the advantages of robustness and fault 

tolerance. Efficient learning algorithms ensure that the network can learn mappings to any 

arbitrary precision in a short amount of time. Furthermore, the input-output mapping is 

explicitly known in a neural network and gradient descent procedures can be used 

advantageously to perform the inversion process. 
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Neural networks have been widely used for function approximation and 

multidimensional interpolation [23]. Given a set ofp ordered pairs (x,, dt \ i = 1,2,..., p with 

x, eRy and d, eR, the problem of interpolation is to find a function F:RN -»R' that 

satisfies the interpolation condition 

F(x i)=d i ,  i  = \,2,.. . ,p (2.1) 

For strict interpolation, the function F is constrained to pass through all the p data points. The 

definition can be easily extended to the case where the output is M-dimensional. The desired 

function is thenf:R^ ->R^. 

In practice, the function F is unknown and must be determined from the given data 

(x,, dj \ i = 1,2,..., p. A typical neural network implementation of this problem is a two-step 

process: Training, where the neural network learns the function F given the training data 

{x, ,d,}, and generalization, where the neural network predicts the output for a test input. 

Two different neural network architectures for interpolation are described in the sections 

below. 

2.1. Regularization Theory 

The problem of estimating the function F above can be thought of as an ill-posed 

problem, since the solution is in general not unique. Additional constraints are therefore 

necessary to convert the ill-posed problem to a well-posed one. Standard regularization 

procedures involve imposing additional constraints on the solution space by defining an error 

function. Consider the interpolation problem defined above. Let the desired function be 

represented by Z^x). Then, according to Tikhonov regularization theory [23,24,25], the 

function F can be obtained by minimizing an error functional given by 
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E(F)=Ç(F)+zlÇ(F) (2.2) 

where X is the regularizing parameter, E s  is the standard error between the desired output and 

the actual response y 

^ -ytf (2.3) 
L i=| 

and E r  is the regularizing term that depends on the properties of F. If P is a linear pseudo-

differential operator embedding a smoothness constraint, 

% (2.4) 

The resulting solution is smooth and therefore, continuous. 

In order to find F that minimizes the total error, we differentiate E with respect to F 

using the Fréchet differential [23] and set it equal to zero. 

dB(F,A)=2kp,PF-l£(</, -F]S l t  1 (2.5) 
Z|=l J H 

where h(x) is a fixed function of the vector x, Sx  = <?(x-x,), P is the adjoint of P, and the 

symbol (.,.)# denotes the inner product in H space. Since Ae(0,oo), the Fréchet differential is 

zero for any A(x) in H if and only if 

P ' P F  =  - | - f k ( 2 . 6 )  
i=i 

Equation (2.6) is referred to as the Euler-Lagrange equation for the cost functional E(F) and 

its solution is given by 

F(x)= k,G(x,e) jffo -F(e,Me-x,> (2.7) 
A 1=1 
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where 0 is the variable of integration and G(x,x, ) is the Green's function for the self-adjoint 

operator P P, i.e., 

P'PG(x , X , M ( X - X ,) (2.8) 

Integrating, we get 

A I=| 

which can be written in matrix-vector form as 

F = Gw 

with 

(2.9) 

w=l(d-F) 

(2.10) 

(2.11) 

and 

G = 

G(x,.x,) G(x1 ,x2) ... G(xx ,xp) 

G(x2,X,) G{X2 ,x2) ... G(X2 ,Xp) 

G(xp,x |) G(xp,x2) ... G{xp,x^ 

(2.12) 

Since the operator P P is self-adjoint, the associated Green's function and 

consequently the matrix G will be symmetric. Further, Light [26] has proved that the matrix 

G is positive definite provided that the data points xi, X2,..., Xp are distinct. In practice, X 

may be chosen to be sufficiently large so that the matrix G + XI is positive definite. This 

implies that the system of equations (2.10) has a unique solution given by 

w =(G + Al)-,d (2.13) 

and the function F is given by 
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F(x)= f>,G(x,x,) (2-14) 
i=l 

The number of Green's functions used in this expansion is equal to the number of data 

points. 

2.2. Radial Basis Function Neural Networks 

The theory described above can be implemented as a radial basis function (RBF) 

neural network. Radial basis function (RBF) neural networks are a class of networks that are 

widely used for solving multivariate function approximation problems [23,24]. An RBF 

neural network consists of an input and output layer of nodes and a single hidden layer 

(Figure 4). Each node in the hidden layer implements a basis function G(x,x, ) and the 

number of hidden nodes is equal to the number of data points in the training database. The 

RBFNN approximates the unknown function that maps the input to the output in terms of a 

basis function expansion, with the functions G(x,xj) as the basis functions. The input-output 

relation for the RBFNN is given by 

RBFNN, x is the test input, xy is the center of the basis function and wtJ are the expansion 

coefficients or weights associated with each basis function. Each training data sample is 

selected as the center of a basis function. Basis functions G(x,x, ) that are radially symmetric 

are called radial basis functions. Commonly used radial basis functions include the Gaussian 

and inverse multiquadrics. 

j=i 

where N is the number of basis functions used, y = (yl,y2 ,—yM Y is the output of the 

(2.15) 
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Figure 4. The radial basis function neural network. 

The network described above is called an exact RBFNN, since each training data 

point is used as a basis center. The storage costs of an exact RBFNN can be enormous, 

especially when the training database is large. An alternative to an exact RBFNN is a 

generalized RBFNN where the number of basis functions is less than the number of training 

data points. The problem then changes from strict interpolation (in an exact RBFNN) to an 

approximation, where certain error constraints are to be satisfied. The operation of the 

generalized RBFNN is summarized in the following steps. 

Step 1. Center selection: This is achieved by using either the K-means clustering algorithm 

[27,28] or other optimization techniques that select the basis function locations by 

minimizing the error in the approximation. The input-output relation for a generalized 

RBFNN using Gaussian basis functions is given by 

where H is the total number of basis functions used, cy is the center of the f1 Gaussian basis 

function and <ry is the width of the Gaussian. The neural network architecture is then 

(2.16) 
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selected by setting the number of input nodes equal to the input dimension, the number of 

hidden nodes to the number of centers obtained in Step 1, and the number of output nodes 

equal to the output dimension. 

Step 2. Training: Training of the neural network involves determining the weights wZ/, in 

addition to the centers and widths of the basis functions. Writing (2.16) in matrix-vector form 

as 

Y =GW (2.17) 

where 

Y = 

df 

4 
(2.18) 

is the desired M-dimensional output for all P input samples, 

G = 

G(x,,c,) G(x„c2) .... G(x,,c„) 

G(x2,c,) G(X2,c2) .... G(X2,C„) 
(2.19) 

_G(XP,C,) G(XF,C2) •••• G(XP,CH) 

is the output of the basis functions, 

W = (w,J j = 1,2,...,//, I = 1,2,..., A/ (2.20) 

is the weight matrix and M is the output dimension. Equation (2.17) can be solved for W as: 

W = G*Y (2.21) 

where G+ is the pseudoinverse defined as 

G+=(GrG)"'Gr. (2.22) 
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Step 3. Generalization: In the test phase, the unknown pattern x is mapped using the relation 

(2.23) 
, . H 

F(x)= Z wij exp 
j=\ 

r TL 

2J. Wavelet Basis Function Neural Networks 

The wavelet transform is a time-frequency transform that provides both the frequency 

as well as time localization in the form of a multiresolution decomposition of the signal [29]. 

Consider a square-integrable function F(x) and let Vm be the vector space containing 

all possible projections of F at the resolution m where 2m is the sampling interval at this 

resolution [30]. Obviously, as m increases, the number of samples at that resolution decreases 

and the approximation gets coarser. Now, consider all approximations of Fat all resolutions. 

The associated vector spaces are nested as follows 

... c V2 c Vx c VQ c VA c V_2 c... (2.24) 

due to the fact the finer resolutions contain all the required information to compute the 

coarser approximation of the function F. It is also obvious that as the resolution decreases, 

the approximation gets coarser and contains less and less information. In the limit, it 

converges to zero: 

Hm Vm = H r„=(0} (2.25) 
HI—*® ffs-OO 

On the other hand, as the resolution increases, the approximation has more information and 

eventually converges to the original signal: 

lim Vm= Û Vm is dense in L2(r) (2.26) 
iffm > oo m=-oo 
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Mallat [31] showed that a unique function, called the scaling function exists such that the 

family of functions resulting from the translation and dilation of the scaling function forms 

an orthonormal basis for Vm. In other words, if <f>(x) denotes the scaling function, then 

Vm - linear span , k e Z} (2.27) 

where 

4>mk =^*{2-nx-k\ M)eZ2 (2.28) 

is the dilated and translated version of <fo). 

Since the family of functions ^ (r)| (m,*)e Z 2} forms an orthonormal basis for V„, 

F can be written as 

Fm{x)= Is^ix) (2.29) 
k—-<o 

where 

srnk = lF(x^(x)dx (2.30) 
-00 

is the projection of F onto the orthonormal basis functions ^(x). 

Further, suppose W„ is the orthogonal complement of Vm in Vm.,. Then 

ym-i =Vm®Wm with Vm±Wm. (2.31) 

The (m-l)th approximation can be written as the sum of the projections of F onto Vm and Wm. 

Equivalently, the difference in information (called the detail) between the wth and (m-l)* 

approximations is given by the projection of F onto Wm. Mallat [31] shows that there exists a 

unique function, called the wavelet function, whose translates and dilates form an 

orthonormal basis for the space Wm. In other words, the detail of Fat the mA resolution is 

given by 



www.manaraa.com

19 

DmF{x)= îd^^ix) (2.32) 
k=—oc 

where y{x) is the wavelet, 

¥mk^)=^"v(2 -mx-k\ (m,k)eZ2  (2.33) 

are the translates and dilates of y/{x) and 

= >(xVm*(x>fc (2.34) 
-00 

are the projections of F onto W„. Further, from (2.31), we get 

ZotmtVmkM (2.35) 
-00 

Since the K-spaces form a nested set of subspaces, F can be written as 

f(z)= î  sk ,^>tk,-<c(x)+ X IdikViki*) (2.36) 
k=-« /=-oo k=~<D 

where / indexes over the different resolutions. In practice, the limits of summation are chosen 

to be finite. 

Figure 5 shows an example of the multiresolution decomposition of a signal into six 

levels. Figure 5(a) is the original signal while 5(b) shows the approximation at the coarsest 

level. Figures 5(c)-(h) show the details at different levels of resolution. 

A neural network architecture that implements a multiresolution approximation is 

shown in Figure 6. The network consists of an input and an output layer with a single hidden 

layer of nodes [30]. The hidden layer nodes are grouped by resolution level. We have as 

many groups as resolution levels, with the number of basis functions at each resolution 

decided by a dyadic center selection method to be described later. The input-output relation 

is given by 
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( \  L K. 
y, = iyy(i,cy)+ I Iw/jb,ty„*(x,c„*) (2.37) 

y=I n=lt=l 

where L is the total number of resolutions, H\ is the number of scaling functions used at the 

coarsest resolution, K„ is the number of wavelet functions used at resolution n, c, is the center 

of the corresponding basis function and w/y- is the weight of the interconnection connecting 

they* hidden node to the output node. The weights are determined in a similar manner to 

the weights in the RBFNN described earlier. 

Figure 5. Multiresolution analysis. 
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x 

Figure 6. The wavelet basis function neural network. 

The primary advantage of using wavelet basis functions is orthonormality [30]. 

Orthonormality of wavelets ensures that the number of basis functions required to 

approximate the function F is minimum. The second advantage is that wavelets are local 

basis functions (localization property of wavelets [30]). The multiresolution approximation 

(MRA) using wavelets allows distribution of basis functions based on the resolution required 

in different parts of the input space. In addition, the ability to add details at higher resolutions 

as more data become available allows the network to learn in an incremental fashion and 

allows the user to control the degree of accuracy of the approximation. 

Equation (2.36) formulated for scalar inputs can be extended for multidimensional 

inputs. The corresponding multidimensional scaling functions and wavelets are formed by 

tensor products of the one-dimensional scaling functions and wavelets. Consider the 2-
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dimensional case with x = (xj, x2 )T. Denoting the 1 -D scaling function by ${x) and the 1 -D 

wavelet by y/{x), one can show that the two-dimensional scaling function is given by [30] 

<D( x , , X 2 ) = <0(X , V(*2) (2.38) 

Similarly, the corresponding wavelet functions are given by 

^'(*1, *2 ) = <*(*! Mxl) 

V2 (x,, x2 ) = y/{xx V(x2 ) (2.39) 

*F3(xi,X2) = !/(XIV(*2) 

For an accurate approximation, all the four basis functions must be used at each hidden node. 

Kugarajah and Zhang [32] have shown that, under certain conditions, a radial basis scaling 

function ^flx-x,-||) and wavelet ^x-x,-|) constitute a frame, and that these functions can 

be used in place of the entire JV-dimensional basis, resulting in a savings in storage and 

execution time while minimally affecting the accuracy of the approximation. 

The operation of wavelet basis function neural networks is summarized in the 

following steps. 

Step 1. Basis Function Selection: A significant issue in wavelet basis function neural 

networks is the selection of the basis functions. The wavelet family used in the WBFNN 

depends on the form of the function F that must be reconstructed. Even though this function 

is usually unknown, some important details may be obtained by inspecting the problem at 

hand. For instance, classification usually calls for a discontinuous or quantized function F 

where all the input data is to be mapped onto one of a few classes. In such cases, 

discontinuous wavelets, such as the Haar wavelet, may be used. Continuous wavelets may be 

used to approximate smoother functions. 
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input space 

Figure 7. Dyadic center selection scheme. 

Step 2. Center Selection: The location and number of basis functions are important since 

they determine the architecture of the neural network. Centers at the first (or coarsest) 

resolution are selected by using the K-means algorithm. Centers at finer resolution levels are 

selected using a dyadic scheme (Figure 7) [33]. Each center at successive resolutions is 

computed as the mean of two centers at a lower resolution. 

Step 3. Training: Training the network involves determining the expansion coefficients 

associated with each resolution level. These coefficients are determined by using a matrix 

inversion operation, similar to the operation performed in RBF neural networks. The centers 

can also be dynamically varied during the training process till the error in the network 

prediction falls below a predetermined level. Over-fitting by the network can be avoided by 

pruning the centers one by one until the network performs at an acceptable level on a blind 

test database. In this study however, no optimization is performed after center selection. 

Step 4. Generalization: In this step, the trained WBFNN is used to predict the output for a 

new test signal using (2.37). 
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3. ELECTROMAGNETIC NDE SIGNAL INVERSION USING NEURAL 

NETWORK FORWARD MODELS 

The iterative inversion algorithm for electromagnetic signal inversion shown in 

Figure 3 was implemented using the neural networks as the forward model to predict the 

measurement signal given the defect profile. The algorithm starts with an initial estimate of 

the defect profile and computes the signal for this profile. This signal is compared to the 

measured signal. The basic principle underlying this algorithm is that, if the predicted signal 

is similar to the measured signal, then the corresponding defect profile is close to the desired 

defect profile. If the signals are not similar, the defect profile is updated iteratively to 

minimize the error. 

The key element in the proposed approach is the forward model. The use of 

numerical models such as finite element models (FEM) in an iterative procedure is 

computationally expensive. In this section, the function mapping the input (defect profile) to 

the signal at the output is approximated using neural networks. Two different neural 

networks, namely the RBFNN and the WBFNN discussed earlier, are used to model the 

forward process. 

The defect profile x, and the corresponding signal y, are presented to the input and 

output layer nodes respectively. The sum-squared error between the desired output 

d = (d,, d2 ,..jdM ) and the actual output y = (y,, y2 ) of the neural network is computed as 

E=\z(dt-y,f (3.1) 
2 I=I 

where Mis the number of output nodes for the neural network (equal to the dimensionality of 

the output). The defect profile is updated using a combination of gradient descent and 
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simulated annealing to minimize the error. In the gradient descent algorithm [34], at each 

iteration, the input is changed according to the relation 

where x is the input and 7 is called the learning rate. 7 controls the rate of convergence of the 

algorithm. Convergence is achieved when E falls below a given threshold. 

One of the drawbacks of using gradient descent for minimization is that the algorithm 

may converge to a local minimum in the error surface. The use of simulated annealing in 

conjunction with gradient descent allows the algorithm to explore the error surface more 

thoroughly, resulting in a globally optimal solution. Simulated annealing is also an 

optimization algorithm [34] that simulates the annealing process in material science. 

Annealing is the process of gradually cooling a liquid till it freezes. By doing so, the material 

reaches a state of very low energy. It can be proved that if the temperature is lowered 

sufficiently slowly, the material will attain the lowest-energy configuration (optimal state). 

In order to apply this technique to combinatorial optimization, we define a 

temperature variable T along with the cooling schedule. The cooling schedule determines 

how rapidly the temperature is lowered. An exponentially slow cooling schedule is defined as 

one where 

with Tk being the temperature at iteration A: and To is a sufficiently large initial temperature. 

An exponential cooling schedule finds the optimal solution, if it exists. However, 

convergence time can be significantly large and in practice, 

(3.2) 

(3-3) 
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Tk=aTk_x,  a < l  ( 3 . 4 )  

is used. 

Simulated annealing may be used in combination with gradient descent to adjust the 

learning rate. This is used to speed up the convergence of the algorithm. Once the network is 

trained, the complete algorithm for inverting a new test signal is summarized below: 

Given the signal from an unknown defect profile, 

(i) Initialize the defect profile randomly. Call this the estimated profile x(0). 

(ii) At iteration k, present the defect profile x(&) to the neural network. Compute the 

predicted MFL signal 

y(*)=F(x(*)) (3.5) 

(iii) Compute the sum-squared error 

£(*) = -jfld-y(*)r (3.6) 

(iv) Compute dE(k)/ôx(k), the gradient of E with respect to x(yfc). 

(v) Update x: 

i(* +1) = x(*)+ (3.7) 
dx(k)J 

(vi) Compute the output of the neural network: 

y(* + l)=F(x(* + l)) (3.8) 

(vii) Compute the new error 

£(* + 1)=}|M(* + I! (3.9) 

(viii) If E(k + l)<£(*), set 
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x(fc + l)«-x(* + l), 

7<-'7x'7mc 

where rjinc is an increment factor, 

(ix) If E(k +1) > E(k), set 

(3-10) 

(3.11) 

(3.12) dec-

(x) Go to (ii). Repeat till E(k) < ERROR _ THRESHOLD. 

In order to implement the algorithm above, it is necessary to compute the gradient of 

the error between the predicted and measured signals with respect to the input. This requires 

the input-output relationship for the different neural networks. In the RBFNN with Gaussian 

basis functions, the output and the input are related by a basis function expansion as given in 

(2.16) and repeated here: 

t2\ 
H 

y, =F(x)= L wij exp 
v=i 

(3.13) 

Substituting in (3.1) and computing the derivative of £ with respect to x=(x,,x2,..jc s) ,  w e  

get 

SEW 
ÔX, 

=-I (4-y\ — 
j >=i 2cr? 

' / j  

i = 1,2,.., iV (3.14) 

Similarly, the input-output relation for a WBFNN using Gaussian scaling functions and 

Mexican hat wavelets is given by 
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0—2 

(3.15) 

with H 2 = K ] + K 2  + ... + K l is the total number of wavelet basis functions used over all L  

resolutions and / = 1,2,..., M. Smooth basis functions are desirable in this application since 

derivatives are to be computed. This precludes the use of discontinuous Haar basis functions. 

Again, taking the derivative of E with respect to the input yields 

for i = 1,2,...,TV. The first term in the derivative in (3.16) is due to the scaling function while 

the second term is due to the wavelets. 

These derivatives are then substituted into the gradient descent algorithm for signal 

inversion in electromagnetic NDE. 

3.1. Results 

The iterative inversion algorithm was tested on magnetic flux leakage (MFL) data 

(Appendix) generated by means of a two-dimensional finite element model (FEM) with a 

100x100 node mesh [6] so that only the cross-section of the flaw with varying widths and 

depths is modeled. MFL techniques are used extensively for the inspection of ferromagnetic 

materials where the measured signal consists of changes in leakage magnetic flux density as 

U - » )  

(3.16) 



www.manaraa.com

29 

the probe scans the sample surface. A set of240 defects was used to generate the 

corresponding MFL signals. The defects varied in width from 1" to 7" and depth from 0.15" 

to 0.85" in a sample of unit thickness. Figure 8 shows two examples of defect profiles and 

their corresponding MFL signals. Of these 240 defect profile-MFL signal pairs, 210 were 

used to train the neural networks while 30 were used as part of the test database with no 

overlap between the training and test sets. 

3.1.1. Inversion Results Using RBFNN 

The first set of results was obtained by using the RBFNN as the forward model. An 

RBFNN with 100 input nodes, 100 output nodes and 140 centers and Gaussian basis 

functions was used. The centers were determined using a K-Means clustering algorithm. The 

spread (or width) of each basis function was determined from the corresponding cluster 

spread. Figure 9 shows the performance of the RBFNN as a forward model. The solid line is 

the true MFL signal while the dotted line shows the prediction of the neural network. These 

results indicate the feasibility of using an RBFNN to accurately model the forward process. 

Figure 10 shows the results of iterative inversion of a signal from a 2.6" long, 

0.75"deep defect. Figure 10(a) shows the true signal as a solid line. The corresponding true 

defect profile is shown in Figure 10(b) as a solid curve. The predicted defect profile (reached 

after convergence of the algorithm) is shown in Figure 10(b) as a dotted line while the 

corresponding MFL signal is shown in Figure 10 (a), again as a dotted curve. These results 

show a perfect match in the MFL signals although the defect profile does not match the true 

profile exactly. This could be due to either an imperfect forward model or the algorithm 

converging to a local minimum during the inversion process. Figure 11 (a) and (b) show 

similar results for a different defect (6.2" wide and 0.40" deep). The same trend is observed 
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in that the true and predicted signals match well although the true and predicted defect 

profiles do not match exactly. These results can be compared to results presented in Figure 

12 and Figure 13, where the signals to be inverted have been corrupted with additive noise. 

Figure 12 (a) shows the results for the 2.6", 0.75" deep flaw when the noise level is 5%, 

while Figure 12 (b) shows the corresponding results for a 15% noise level. Similar results for 

the 6.2", 0.40" deep flaw are shown in Figure 13 (a) and (b). These results indicate that the 

algorithm is robust under reasonable levels of noise in the measurements. A slight change in 

the predicted depth can be observed when the data is noisy. This is particularly so when the 

actual depth is small. This result can be attributed to the fact that additive noise changes the 

amplitude of the signal. Since information about the depth of the flaw is present in the 

amplitude, a slight change in signal amplitude results in a corresponding change in the 

predicted depth. However, the error in predicted depth is only 5% for the 0.75" deep flaw. 

[«16  

| -OS 

Figure 8. Exemples of defect profiles and MFL signals. 
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Figure 9. Performance of the RBFNN as a forward model 

MFL signal (length: 2.6". depth: 75%) 

M  !  j  True MFL 

0 10 20 30 40 (a)50 60 70 80 90 100 

Profile 

M M  !  M  !  

M M  
— True profile 
— - Final prediction 

i . -i 1 
0 10 20 30 40 (bfO 60 70 80 90 100 

Figure 10. Results of iterative inversion, RBFNN as forward model (2.6", 0.75" deep). 
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Figure 11. Results of iterative inversion, RBFNN as forward model (6.2", 0.40" deep). 
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Figure 12. Performance of RBFNN with noise for 2.6", 0.75" deep flaw (a) 5% noise, (b) 15% noise. 
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Figure 13. Performance of RBFNN with noise for 6.2", 0.40" deep flaw (a) 5% noise (b) 15% noise. 

3.1.2. Inversion Results Using WBFNN 

Results obtained using the WBFNN as the forward model are presented in Figures 12 

through 16. Two resolution levels, with 10 centers at the coarsest resolution selected using 

the K-Means clustering algorithm, were used. Centers at higher resolution were selected 

using the dyadic center selection method to give a total of 29 centers. No optimization was 

performed after center selection to reduce the number of basis functions used. The scaling 

function used was a Gaussian function 

«2 ^ 

t,c)=exp II»-cf 
2 <T2 

(3.17) 

where c and d'are the center and spread of the scaling function, respectively. The wavelet 

functions were Mexican hat wavelets as shown below 

lKx,c)= HMI22m 

2<t2 

2 ) r 

exp 
2 — z t  

l»-4 
2a2 

(3.18) 
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where c and care the center and spread of the wavelet function respectively, m is a 

parameter controlling the dilation of the wavelet, whose value depends on the resolution 

level. Figure 14 shows the performance of the WBFNN as a forward model. This result 

indicates that a WBFNN is capable of accurately modeling the magnetic flux leakage 

phenomenon. A slight error in the estimated signals can be attributed to the use of fewer 

basis functions in the expansion. Figure 15 and Figure 16 show the performance of the 

iterative inversion process while Figure 17 and Figure 18 show the corresponding results 

when the measurements have been corrupted with 5% and 15% noise. 

Comparing the results in Figures 7 and 12, we see that the WBFNN is a better 

forward model than the RBFNN. However, the iterative inversion results of the WBFNN are 

less accurate than those obtained by using the RBFNN. One possible reason for this could be 

that the WBFNN is over-fitting the training data due to a high number of resolutions. This 

can be resolved by using a WBFNN with fewer basis functions and/or resolutions. 

Simulations with a WBFNN using three resolution levels resulted in a higher error in the 

predicted defect signal. The results also show the robustness of the algorithm with respect to 

additive noise demonstrating the feasibility of the inversion technique. 
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Figure 14. Performance of WBFNN as a forward model. 
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Figure 15. Results of iterative inversion, WBFNN as forward model (3.4", 0.85" deep). 
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Figure 16. Results of iterative inversion, WBFNN as forward model (6.2", 0.40" deep). 
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Figure 17. Performance of WBFNN with noise for 3.4", 0.85" deep flaw (a) 5% noise (b) 15% noise. 
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Figure 18. Performance of WBFNN with noise for 6.2", 0.40" deep flaw (a) 5% noise (b) 15% noise. 
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4. ELECTROMAGNETIC NDE SIGNAL INVERSION USING FEEDBACK 

NEURAL NETWORKS 

The second approach to solving the inverse problem is a feedback neural network 

scheme. The feedback neural network (FBNN) approach is depicted in Figure 19. Two neural 

networks are used in a feedback configuration. The forward network predicts the signal 

corresponding to a defect profile while the inverse (characterization) network predicts a 

profile given an NDE signal. The forward network replaces the finite element model 

employed in a typical phenomenological approach and provides a reference for comparing 

the defect profile predicted by the inverse neural network. 

The overall approach to solving the inverse problem is as follows. The signal from a 

defect with unknown shape is input to the characterization neural network to obtain an 

estimate of the profile. This estimate is then input into the forward network to obtain the 

corresponding prediction of the MFL signal for that estimate of the profile. If the estimated 

defect profile is close to the true profile, the measured MFL signal and the predicted signal 

from the forward network will be similar to each other. On the other hand, if the error 

exceeds a threshold, the training mode is invoked and the networks are retrained with the 

correct defect profile-MFL signal dataset. 

Since the forward neural network serves as a "standard' for measuring the 

performance of the FBNN scheme, it must be capable of accurately estimating the signal 

obtained from a variety of defect profiles. The wavelet basis function neural network 

described in Chapter 2 is used for implementing the forward network. A radial basis function 

(RBFNN) neural network is used as an inverse network for characterizing the defect profiles. 
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Figure 19. Schematic of the feedback neural network approach (Prediction mode). 

4.1. FBNN Training and Optimization 

The forward and inverse networks are first trained using the training database. The 

forward network is tested to ensure that it is capable of accurately modeling the forward 

process for the training database, and if necessary, the network parameters are optimized. In 

addition, the inverse network is also trained and its parameters optimized. This process is 

referred to as the training mode. The goal of the optimization step is to minimize the error 

due to the inverse RBFNN. Let A/"be the error between the actual MFL signal and the 

prediction of the forward network in the feedback configuration. In order for A/to be zero, 

the characterization network must be an exact inverse of the forward network. While the 

functional form of the forward network can be derived easily, obtaining its inverse 

analytically is difficult This is due to the fact that the output of the forward network is a 

function of the number and location of the respective basis function centers in each network. 

The inverse is, therefore, estimated numerically. 
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An adaptive scheme is used to estimate the inverse of the forward network as shown 

in Figure 20. The adaptive scheme uses the same gradient descent - simulated annealing 

combination described in the previous chapter. This "inverse network" is used as the 

characterization network. 

Let E = the error at the output of the inverse network in Figure 20, 

wig = interconnection weight from node j in the hidden layer to node k in the output layer 

Cj = center of the j"1 basis function (at node j in the hidden layer) 

Oj = spread of the j* basis function 

y = the measured signal 

x = (x,, x 2 x k  ) be the desired output of the RBF network 

i=(x,, *2,..., x4,..jt„) be the actual output of the RBF network 

Then, the error E can be defined as 

t- *=i 
(4.1) 

Measurement aed/or FEM 

Jrraiaiag Datai, 

i *0)y(Ô ? 

*(0| Forward 
NN Predicted 

Sigeal 
NN Predicted 

Defect 
Profile 

+ 

Figure 20. Feedback neural network: Training mode. 
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where xk is given by 

i xk = 2>; 
7=1 

-c, 

x , 
(4-2) 

and the basis function is chosen to be a Gaussian function: 

fly-/II 
2erï 

r „ h 2 \ 
-c 

= exp 
2*j 

(4.3) 

Substituting (4.2) and (4.3) into (4.1) and taking the derivative with respect to the weights 

wig, we have 

dE / » i fkzfJ] 
J (4.4) 

Similarly, the derivative of the error with respect to the other two parameters (c, and a,) can 

be computed as follows: 

>-«,11 
£-(** -*k)  

dcji *=i 

d<Tj k=1 

Wt,< 
2"2j y 

(kziÂ 

y< ~c 

v alj 

j• 

H,!2 

/j 

(4.5) 

(4.6) 

The derivatives are then substituted into the gradient descent equation to derive the update 

equations for the three parameters. The gradient descent equation is given by 

d'*W=d0U +TJ 
( de^ 

dd 
(4.7) 

where d is the parameter of interest , cyl or ctj . The algorithm is summarized below. 
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Train the wavelet basis function neural network to predict the measured signal given 

the defect profile. Using the same data, train the inverse network to predict the profile given 

the measured signal. For each profile-signal pair {x(/),y(/)} in the training database, 

(i) Apply the defect profile to the WBFNN and obtain the predicted signal. Call this 

y 

(ii) Present the predicted signal y to the inverse (RBF) neural network. Compute the 

predicted defect profile i(/)=(x,, x2xk ,..Jcn ) where 

(4.8) 

(iii) Compute the sum-squared error 

£(,)=lgx(<)-i(/)|2 (4.9) 

(iv) Compute the gradient of E with respect to the RBFNN parameters. d£(r) d£(/) 

(v) Update the parameters w*, or <ry using the gradient descent equation 

(4.10) 

(vi) Compute the new output of the RBF neural network i n n . { t )  

(vii) Compute the new error 

£_(,)=l||x-x_(,)||2 (4.11) 

(viii) If ^(/)<£(/), set 
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</(/ + !)<-</(/+ l)f where d = w l g ,d  =c^ oxd-  <r; ,  (4.12) 

t?*-n*ninc  (4.13) 

where rjinc is an increment factor. 

(ix) If EIKW(t)> E{t), set 

V+-n*'1dec- (4.14) 

Go to (ii). Repeat till £(/)< ERROR_THRESHOLD. 

Once the characterization network is trained and optimized, the two networks are 

connected in the feedback configuration shown in Figure 19. The characterization network 

can then be used for predicting flaw profiles using signals obtained from defects of unknown 

shape and size. 

4.2. Results and Discussions 

The algorithm was tested with the tangential component of magnetic flux leakage 

(MFL) data generated by a 2D FEM employing a lOOxlOO-element mesh. The database is the 

same database used to test the algorithm described in Chapter 3. A wavelet basis function 

neural network (WBFNN) is used as the forward network while the radial basis function 

(RBFNN) network is used as the inverse network for characterization. The WBFNN uses 3 

resolution levels with 10 centers at the coarsest resolution. The centers at other resolutions 

are computed using a dyadic grid (a total of 66 hidden nodes). The number of input nodes is 

equal to the number of points (100) used to approximate the defect profile. The number of 

output nodes is equal to the length of each signal (also 100 points). The RBFNN uses 140 

basis functions in the hidden layer. 210 defect profile-MFL signal pairs were used in the 

training set and 30 signals were used for testing with no overlap between the two data sets. 
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Figure 21 shows the results of training the forward network. The solid line shows the 

true signal while the dotted line shows the neural network prediction. These plots indicate 

that the forward network is capable of predicting the signal with little error. A typical 

prediction result is shown in Figure 22. The solid line in Figure 22 (a) shows the true signal. 

This is applied to the RBFNN network, which has not been optimized. The prediction result 

of the RBFNN network is shown in Figure 22 (b). The resulting signal is then applied to the 

forward network. The corresponding output is shown in Figure 22 (a). The results after 

optimizing the inverse network are also shown in Figure 22 (a) and (b). Similar results 

obtained using signals from defects with other geometries are shown in Figure 23 and Figure 

24. 
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Figure 21. Training résulte for the forward network. 
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Figure 22. Feedback neural network results (3.8", 0J5" deep). 
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Figure 24. Feedback neural network result (4.6", 035" deep). 

These results indicate that the optimization process improves the prediction results. In 

addition, the use of a forward network in a feedback configuration provides a measure of the 

error in the characterization with the error in the defect profile prediction being proportional 

to the error in the signal prediction. This fact is also illustrated in the results presented in 

Figure 25 - Figure 28, where the inversion results on signals with and without noise is 

compared. Figure 25 shows the inversion result for a 4.2" wide, 0.55" deep rectangular flaw, 

while Figure 26 (a) and (b) show the corresponding results with 5% and 15% additive noise. 

Similar results are shown in Figure 27 and Figure 28 for a 1.4" wide, 0.20" deep flaw. In 

general, we expect the feedback network combination to perform poorly when the test data is 

not very similar to the training data. These figures show that the noisy measurements are not 

very similar to the original training data, and as such, the performance of the feedback 
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network algorithm will degrade. However, as mentioned earlier, the error in the predicted 

profile increases with an increase in the amount of noise, and this fact can be used to provide 

a measure of confidence in the network prediction. 
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Figure 25. Inversion results for a 4.2" wide, 0.55" deep flaw (no noise). 
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Figure 26. Inversion results for a 4.2" wide, 0.55" deep flaw (a) 5% noise, (b) 10% noise. 
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Figure 27. Inversion results for a 1.4" wide, 0.20" deep flaw (no noise). 

Figure 28. Inversion results for a 1.4" wide, 0.20" deep flaw (a) 5% noise (b) 15% noise. 
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5. THE FINITE ELEMENT NEURAL NETWORK AND ITS APPLICATION TO 

SIGNAL INVERSION 

This section first describes the finite element model (FEM) and describes the 

reformulation of the FEM into a neural network structure using a simple two-dimensional 

problem. The structure of this neural network is described, followed by its application to 

solving the forward and inverse problems. This model is then extended to the general case 

and the advantages and disadvantages of this approach are described along with an analysis 

of the sensitivity of the inversion algorithm to errors in the measurements. 

5.1. The Finite Element Method 

Consider a typical boundary value problem with the governing differential equation 

where L is a differential operator,/is the applied source or forcing function and ^ is the 

unknown quantity. This differential equation can be solved in conjunction with boundary 

conditions on the boundary F enclosing the domain. A commonly used approach to solve this 

problem is to use the finite element approach. The variational formulation of this approach 

determines the unknown tf> by minimizing the functional [7,8] 

with respect to the trial function j. The minimization procedure starts by dividing the 

domain of interest into small subdomains called elements and representing $ in each element 

by means of basis functions defined over the element: 

L j = f  (5.1) 

(5.2) 

r = zn'jfj 
n 

(5.3) 
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where jie is the unknown solution in element e, N' is the basis function associated with node 

j in element e, <f>) is the value of the unknown quantity at node/ and n is the total number of 

nodes associated with element e. In general, the basis functions (also referred to as 

interpolation functions or shape functions) can be linear, quadratic or higher order basis 

functions. Higher order polynomials, though more accurate, generally result in higher 

computational complexity, and hence, linear basis functions are commonly used. 

Once the domain is divided into smaller elements, the functional can be expressed as 

*"(*)= lH£') (5.4) 
e-\ 

where M is the total number of elements and F^e ) represents the value of the functional 

within element e: 

F^e)=l ijlj'dil- Sft'dCt (5.5) 
2 a' a' 

By substituting (5.3) in (5.5), we obtain the discrete version of the functional within each 

element: 

F(£')=-Vr JNT-N^dn»' J/N'dtl (5.6) 
2 n' a' 

where (...)T is the transpose of a matrix or a vector. This can be written in matrix-vector form 

as 

F(^)=!**W-<Pe7be (5.7) 

where Ke is the n x n  elemental matrix with elements 

Kfj = / NfLN^dCl (5.8) 
n' 
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and bc is an n x 1 vector with elements 

b f =  i / N f d n .  (5.9) 

From (5.4) and (5.7), we obtain 

(5.10) 

where K is the n x n  global matrix derived from the terms of the elemental matrices for 

different elements, and N is the total number of nodes. Equation (5.10) is the discrete version 

of the functional and can be minimized with respect to the nodal parameters 9 by taking the 

derivative of F with respect to 9 and setting it equal to zero. The resulting equation 

— = K,-b=0 (5.11) 
dip 

can be solved for the nodal parameters 9  :  

Boundary conditions for these problems are usually of two types: natural boundary 

conditions and essential boundary conditions. Essential boundary conditions (also referred to 

as Dirichlet boundary conditions) impose constraints on the value of the unknown *)at 

several nodes. Natural boundary conditions (of which Neumann boundary conditions are a 

special case) impose constraints on the change in ^across a boundary. Imposition of these 

conditions into the finite element formulation is straightforward. Natural boundary conditions 

are incorporated into the functional and are satisfied automatically during the solution 

procedure. Dirichlet boundary conditions, on the other hand, need to be handled separately. 

These conditions are imposed on the functional minimization equation (5.11), by deleting the 

9 = K b. (5.12) 
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rows and columns of the K matrix corresponding to the nodes that are part of the boundary. 

Suppose the given boundary condition is 

f = pontile boundary T (5.13) 

and let the i* node represent the boundary F. Then, equations (5.11) are modified as follows: 

bt 4- p, bj 4-6,-KJtp, j * i (5.14) 

ku<-1, kv 4-0, kjt 4-0,/*, (5.15) 

This process can be repeated for each node on the boundary F and the resulting matrix can be 

solved as indicated in (5.12) to obtain the solution subject to the Dirichlet conditions. 

5.2. The Finite Element Neural Network 

The finite element model can be easily converted into a neural network form. To see 

this, consider the simple two-dimensional example: 

-V.(aV / (5.16) 

with boundary conditions 

4 = ponYx (5.17) 

and 

c&$*h + y$=qonr2 (5.18) 

where a and /fare constants depending on the material,/is the applied source, F=F, +f2 is 

the boundary enclosing the domain, h is its outward normal unit vector, and y, p and q are 

known parameters associated with the boundary. Assume that the domain is divided into two 

elements (Figure 29), with four nodes. The elemental matrices Ke and b€ can be derived as 

[8] 
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Kf j  =  f  (àVNf  • VJVJ + /JN'N'j )jQ (5.19) 

and 

b f =  j J N f d S l .  (5.20) 

The global matrix equation can be assembled by combining the two elemental 

matrices. To do this, we need the node-element connectivity information given in Table 1. 

This table contains information about the various nodes that make up each element, as well 

as their position in the element (often called the local node number). Each node also has a 

global node number, indicating its position in the entire finite element model system. The 

columns in the table marked n(i,e) refer to the j* node in element e and the value of n(i,e) is 

the global node number. For instance, node 2 in Figure 29 appears as the second node in 

element 1 and the third node in element 2. 

Element 1 

Element 2 

3 

2 
4 

Figure 29. FEM domain discretization using two elements and four nodes. 



www.manaraa.com

54 

Table 1. Node-element connectivity array for the two-dement mesh given in Figure 29. 

e n( l,e) n(2,e) n(3,e) 

1 1 2 3 

2 4 3 2 

The connectivity array shown in Table 1 can be used to obtain the global matrix K, 

by combining the appropriate members of the elemental matrices. Consider node 2 as an 

example. Since node 2 appears as the second node in element 1 and the third node in element 

2, we combine the corresponding members k[2 and Aff3 of the elemental matrices to obtain 

*22 — *22 *33 • 

This process is repeated for each of the four nodes, giving 

(5.21) 

K = 

*11 

*21 

*31 

12 

33 k x
2 1 +ki  

k \ 2 +k.  23 

13 

a.,3 

*23 +*32 

*33+*& 

*12 

1 

a.31 

*21 

*n 

(5.22) 

Similarly, the vector b is given by 

' bl 1 

b\ +63 

bj + b2 

. J 

b = (5.23) 

In order to convert the FEM into a neural network, we start by first separating Kfj into two 

components: one component dependent on the material properties or and /?, and the second 
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component independent of these material properties. This can be achieved by rewriting (5.19) 

as 

Kfj  =a  f VNf •VN 'dn + fl / NfN 'jdCi 
n< a' (5.24) 

= as'j+prjj 

where 

Sfj = jVNf'VN'jcKl (5.25) 
n' 

and 

T ' j  = J N f N 'jdn (5.26) 
ne 

Rewriting the original equation as shown in (5.24) assumes that the material 

properties are constant in an element. In general, this is not an unreasonable assumption, 

since the elements are usually small enough for this assumption to be true. Equations (5.24) 

and (5.11) can be converted into a neural network. The structure of this network is shown in 

Figure 30. The neural network is a three layer neural network, with input, output and hidden 

layers. The input layer has two groups of 2 neurons, with one group taking the a values in 

each element as input and the second group taking in the values of f} in each element as 

input. The hidden layer has 16 neurons that are arranged in groups of 4 neurons for 

convenience. The output of each group of hidden layer neurons is the corresponding row 

vector of K. In the general case with M elements and N neurons in the FEM mesh, the input 

layer has 2M neurons, with the inputs being the material properties a and /? in each of the M 

elements. The hidden layer has N2 neurons arranged in AT groups of N neurons, 

corresponding to the AT2 elements in the global matrix K. The weights from the input to the 
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hidden layer are set to the appropriate values of Sy and Tjj. Examples of these weights are 

shown in Figure 30. Each neuron in the hidden layer acts as a summation unit, and the 

outputs of the hidden layer neurons are the elements of the global matrix K: 

where w* =S* if nodes / and j are part of element e, and w* =0 otherwise. Similarly, 

gfj =T,' if nodes i and j are part of element e, and g~ =0 else. 

Each group of hidden neurons is connected to one output neuron (giving a total of 

four output neurons) by a set of weights ?, with each element of 9 representing the nodal 

values <pj. Each output neuron is also a summation unit, and the output of each neuron is 

equal to bt : 

where the second part of (5.28) is obtained by using (5.27). The number of output neurons in 

the general case increases to N. 

5.2.1. Incorporation of Boundary Conditions 

Natural boundary conditions are applied in the finite element method by adding an 

additional term to the functional. For the example under consideration, this functional takes 

the form [8] 

Kij = taewij +ftegfj (5.27) 

(5.28) 

(5.29) 
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Figure 30. The finite element neural network. 

Assuming that the boundary F2 is made up of Ms segments, (5.29) can be written as 

(5.30) 
1=1 

Further, suppose that the unknown function <jf in each segment s can be approximated as 

<5.31) 
y=i 

where N* are the basis functions defined over the segment s: 

n;=\-ç ,  n;=ç (5.32) 
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Here, £ is the normalized distance between node 1 and node 2 on the segment. From (5.29) 

and (5.31), if Is is the length of the segment, we get 

r)Fs  

|£ = KV-b' (5.33) 
°9, 

where 

k = frw/df 
0 

6/ = \qn-vil. 
0 

9'=[#,#1 (5.34) 

Finally, the global matrix equation is modified as follows: 

^Ç = (Kç-b)+(KV-bJ) = 0 (5.35) 
aç 

Equation (5.35) indicates that the elements of K* are added to the elements of K that 

correspond to the nodes on the boundary F2. Similarly, the elements of bJ are added to the 

corresponding elements of b. Note that the elements of K' and bJ do not depend on the 

material properties a and /?. Equation (5.35) thus implies that natural boundary conditions 

can be applied in the finite element neural network as bias inputs to the hidden layer nodes 

that are a part of the boundary, and the corresponding output nodes. 

Dirichlet boundary conditions, as explained in the previous section, are applied by 

clamping the potential values at the nodes on the boundary f,, and updating the matrix K 

according to equations (5.14) and (5.15). In the FENN, these boundary conditions can be 

applied by clamping the corresponding weights between the hidden layer and output layer 
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neurons. These weights will be referred to as the clamped weights, while the remaining 

weights will be referred to as the free weights. In addition, we modify the weights between 

the input and the hidden layers, and the source terms according to equations (5.14) and 

(5.15). 

As mentioned earlier, the FENN can be easily extended to the case where the FEM 

mesh has N nodes and M elements. Similarly, extension to higher dimensional problems is 

straightforward. The number of nodes and elements dictates the number of neurons in the 

three layers. The weights between the input and hidden layer change depending on node-

element connectivity information. 

53. Forward and Inverse Problem Formulation Using FENN 

Applying the FENN to solve the forward problem is straightforward. The forward 

problem involves determining the weights 9 given the material parameters and the applied 

source. Given these values, the procedure for solving the forward problem is as follows. 

1. Apply the material parameters a and fi to the input neurons and compute the output of 

each of the hidden neurons. Any natural boundary conditions are applied as bias 

inputs to the hidden layer neurons. Initialize the value of 9 randomly for all the free 

weights. Fix the values of the clamped weights according to the Dirichlet boundary 

conditions. Let the value of 9  at iteration t be denoted by 9(f) .  

2. At iteration t, compute the output of the neural network: 

b,(thiKy4j(tl 1 = 1,2,...,JV (5.36) 
y=i 

3. Compute the error at the output of the neural network: 
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£(f)=I||b-b(/]|=Il(6,. -6,(Of =\î(E(t)Y (5.37) 

4. Compute the gradient of the error with respect to the free hidden layer weights 

(5.38) 

5. Update the free weights using the gradient descent equation 

(5.39) 

6. Repeat steps 2-5 till convergence is achieved. The convergence criterion considered 

here is that the output error must fall below a threshold. 

This approach is equivalent to the iterative approaches used to solve for the unknown 

nodal values [7]. 

The same neural network can be applied easily to solve the inverse problem. The 

inverse problem involves determining the material properties or and fi, given the 

measurement ç and the applied source b. We apply the iterative approach described in 

Approach I to solve the inverse problem. The overall algorithm is as follows. 

1. Initialize the values of a and /?. Let a(r)and /?(/) denote the values of the material 

properties at iteration t .  Fix the weights between the hidden layer and the output layer 

neurons to the measurement 9. 

2. At iteration t ,  apply a(f)and f i ( t )  at the input layer of the FENN. Compute the output 

of  the network using equations (5.27) and (5.28).  Call  this  output  b( t ) .  

3. Compute the error at the output 
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£(/)=i|b-b(/| = il(b/.-6,.(/))Z =il e,2 

211 11 2 /=! 2 /=| 

4. Compute the gradient of the error due to a(/)and /?(/) 

(5.40) 

hà-is, 
Sa, i—I V=l 

f-i'< 

(5.41) 

(5-42) 

5. Update the values of a(t) and /?(/) using the gradient descent equation 

/ 

ore(/ + l)=ae(r)+>7 f Ml) 
I 5a, J 

A(' + 0=A(')+9 

(5.43) 

(5.44) 
l «A J 

6. Repeat steps 2-5 till convergence. Again, the algorithm converges when the error falls 

below a threshold. 

5.4. Advantages and Modifications 

The major advantage of this formulation of the FENN is that it represents the finite 

element model in a parallel form, enabling parallel implementation in either hardware or 

software. Further, computing gradients in the FENN is very simple. This is an advantage in 

solving both forward and inverse problems using gradient-based methods, as described in 

Approaches I and II. The expressions for the gradients (shown in the previous subsection) 

also indicate that the gradients can be computed in parallel, enabling even faster solution of 

both the forward and inverse problems. Secondly, the network has been derived to make the 

solution of inverse problems tractable. A major advantage of this approach for solving 

inverse problems is that it avoids inverting the global matrix in each iteration. This results in 
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considerable computational savings. In addition, the approach lends itself easily to solution 

of the forward problem. This is in contrast to other approaches described in the literature, 

where the networks are derived to simplify the solution procedure for the forward problem, 

and need considerable modification to solve the inverse problem. 

The FENN also does not require any training, since most of its weights can be 

computed in advance and stored. The weights depend on the governing differential equation 

and its associated boundary conditions, and as long as these two factors do not change, the 

weights do not change. This is especially an advantage in solving inverse problems in 

electromagnetic NDE. This approach also reduces the computational effort associated with 

the network. 

The major drawback of the FENN is the number of neurons and weights necessary. 

However, the memory requirements can be reduced considerably, since most of the weights 

between the input and hidden layer are zero. These weights, and the corresponding 

connections, can be discarded. Similarly, most of the elements of the K matrix are also zero 

(K is a banded matrix). The corresponding neurons in the hidden layer and the associated 

connections can also be discarded, reducing memory and computation requirements 

considerably. Furthermore, the weights between each group of hidden layer neurons and the 

output layer are the same (9 ). Weight-sharing approaches can be used here to further reduce 

the storage requirements. 

5.5. Sensitivity Analysis of the Inverse Problem 

Intuitively, an error in the measurement 9 will result in an error (which can be large 

for ill-posed problems) in the estimate of the material parameters or and fi. In order to 
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quantify the error in the material parameters, we assume that ^ =<t>: + A^; is the measured 

value of the potentials where <f>] is the true value of the potential and A^y is the error in the 

measurement at node j. Let âe (/?) and fit («) be the corresponding estimated values of the 

material parameters in element e at iteration n. We assume that âe (n) = ae (n)+St(n) where 

ae (zz) is the corresponding estimate of a when the measurement error in ^ is zero. 

Similarly, let (w) = fie{n)+et{n). Then, define the output of the FENN as 

5 (") = zf 2x (") < + à {»)gîj 1a 
y=l x <=l J 

= Z(Zae("K + A(»)s£ +*e{"w +£.(")&y]k +A4j 

= M K + A + (")K + A (") g,y ] 
>=1 V r=l y >=I V e=l J 

+ e ( E * « ( # , K + a 4 )  
y=i v <=i y 

=6, («)+zfza- +A W 
y=i v. <=i 

Vy +A4) 
y=i x *=i y 

(5.45) 

where 

f » 
M") = Z 2ffe("X'|-A(")gJ k 

y=i x <=i y 
(5.46) 

is the output of the FENN when the measurement noise is zero. The corresponding sum-

squared error at the output of the FENN is 
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é(»)4é£(") 
^ 1=1 

(5.47) 

where 

Ê i{n) = b,-b,{n) 

n ( m 
=6,-4(»)-Z Z^W<+AM&; 

y=I X. <=l 

-Z[Z^(nX +A4j 

AT (m \ 
=ei (")-Ë Y*A<(NH+A(»)^ 

j-1 x e=l / 

n f m 
-z zao»K+«,.(»)^ k+H 

y=l x «=l y 
(5.48) 

and E t  (n) is the error at the FENN output when the measurement noise is zero. Then, the 

gradient-descent update equations for à and fi are given by 

à t{n) = â t(n-\)+tj 
dÉ(n-1)' 

àà. ' y 
(5.49a) 

M n )  = M n ~ l ) + 1 J 
r d£(/i-l) 

% , 
(5.49b) 

The derivatives in (5.49) can be obtained from (5.41) and (5.42): 

4^--£4wfétel--éé«mfo i=i y=i >=' 

( f 

z <,/=! y I=i y=i 

(5.50) 

(5.51) 



www.manaraa.com

65 

Then, the error in the estimates à and ft can be computed according to Theorem I below. 

Theorem I: The following results hold for the error in the estimates in à and fi : 

1. Se(n) = £«(»-!)+/(£, (»-l),a, (»-l),A(#i-l),£,(i»-l),*,(#1-1),^,) 

3. If the measurement error is bounded, i.e., A < 5 B, then 5 t  («) and e t  (/i) are 

also bounded. 

Proof: In order to prove Theorem I (1), we start with (5.49): 

( aÊÇw-ip 
à M = à A " - x ) + T i  

ôàt , 

Substituting (5.50) in (5.49), 

N N 

( " )  =  « , ( « - ! ) + ^  ( " -  0  tjwo 

(5.52) 

1=1 y=l 

=âe(n- 2 ) + ( n  ~  2 ) Û K  + ? Z  Z  "  l ) M  ( 5 5 3 )  
<=i y=i i=i y=i 

Continuing with the recursion, we get 

( " )  =  ( ° ) ( ° ) ^ y <  +  ̂ Z Z ^  ( O ^ y X  +  •  • • + ? Z Z  Ê .  ( 5 . 5 4 )  
f=l y=l i=l >=1 i=l 7=1 

or 

(") = W+t/ZZ^XZS (/) (5.55) 
i=l y=l f=0 

From (5.48) and (5.55), we have 
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AT n-l 

+ % Z E  £ - ( ' ) - E A & E K ( z ) < + a  ( ' K ) - E Â E K ( ' ) < + ^ ( ' ) < )  
'.y=l /=0 L *=l c'=l *=1 e'=l 

(5.56) 

This can be simplified to give 

&e(") = »,M+?E 4XE£>(0-7Z£<EEA&E(M'X + A (')<) 
i,;=l f=0 #,y=l f=0 A=l e'=I 

"tE^XEE^EK ('X +^('X) (5.57) 
',7=1 /=0 1=1 «'=1 

From the definition of we get 

«, (") = <*c (0)+vE ̂ XE£' (')+^E A#XZ 5 (0 
',/=! »=0 /.y=l r=0 

- *7 E Ê E A4 E(e, OX+A ('XWE ̂ XEEÀEK('X(fX ) 
/,7«l f=0 *=1 r'al t , j m  1 fsO *=| e'#l 

(5.58) 

But 

«e(") = M°)+?E*XE£<(') (5.59) 
u 1=0 

So, 

(")="« (")+?E A4<Ë£. (z)-7E «EEMEK (*X+A- (')<) 
',7=1 f=0 /,y=l r=0 *=l e'=l 

- 7 E << ËEÂEK (f)<+^ (')< ) (5.60) 
/,/=! 1=0 t=l «'=1 

or 

<%«(") = *«(")+<%(") (5.61) 

where 
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âc (")=?Z H<Z£. (O-^Z ï>j <ZZ A^Z(M'K+A (')O 
/.y=l f=0 /,y=l ;=0 i=l <'=! 

"^Z <*XZZÀZK ('H+^t'Xj (5.62) 

with £ (0) = s e  (0) = 0. Using this fact and (5.62), we have 

<?,(!) = ?Z WjKe> (°) "^Z WZMZK (°) < + A (°)<) (5.63) 
»,7=l '.>=! *=l e'=l 

^(2) = vZA^<ZE> (') ~ ?Z4XZZ A&Z("' (') w-' + A (')g'j) 
/,y=i /=o t,j-\ i=o *=i f'=i 

-vZ^KZZÂZKC'X+^C'X) 
/,y=i 1=0 t=i «'=i 

or 

».(2) = #.(l)+7Éâ|»/'<£,(l)-'7i*w;iA#l,i(«,(lX-l'A(l)g;') 
i.y=l i,y=l t=l <-I 

-vÉ^XÉÂÊKOX+^OX) (5-64) É#xéâé 
i,y=l i=l e'=l 

This process can be carried out for all n, and the recursive relation is given by 

8,(») = *,(»-1)+^Z E- ("-Ohk -vZ WZA*ZK("" 0 *£ + A (»"0«* ) 
'.y=I I.y=l t=l e'=l 

~ ?Z 4X Z Â Z( (" ~ OX +f,("-,X) (5.65) 
i,/=l *=l e'=l 

or 

S t {n)  =  S t (n- \ )+f ( E
l (n- \ ) ,a e (n- \ ) , f i e (n- \ ) ,S t (n- \ ) ,£ t (n- \ )J /) (5.66) 

By a similar process, we can prove Theorem I (2): 
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(5.67) 

To prove Theorem I (3), we start with the fact that the measurement error is bounded: 

A<tyj/tj<B (5.68) 

Then, from (5.65), 

<?,(») £<?,(«- 0+7™* a^e t(n- 0#X> e t(n-l)^X 

-7 min Al + A)E ̂ <E^EK(""OX'+A (n-l)g,i)' 
i,ya| *=l e'=l 

5(1+5) e <*xE*ŒK ("-OX+a- (»- l )g£)  
i.y=i t=i «'«1 

-7min 
V M 

(1+4 E^XË^EK(«-Ox'+*,-("-O^j' 
i,y=l *=l e'=l 

A f  N  M  

(1+5) E 4XE&EK (w- OX+ *«• 0» - 0 s£) 
',7=1 A=1 «'=1 

Recognizing that 

4 (")=EfEa. (n) x+a (%)&; V,, 

/ AT AT 

S (") ̂ , (" - 0+7 max ,4E 5 ("- 04X• BE £. (" ~ 04X 
< '.7=1 '.7=1 

-7min 

-7 min 

4 1 + - i ) ,  a ( i + a )  £  t > X * .  ( " - ! )  
v=l 

n 

e 
'.7=1 

(i+^E^XE^EK^-OX+^^-O^). 
i,y=l *=l tf'=l 

(5.69) 

(5.70) 
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N N M 

(l + ̂ 'Z^Ï^ÏKC"-1)^ +^("-0s,*) 
/,/=! 4=1 e'=l 

Also, 

£(«) ̂  Sc (/»-l)+7min /*£ E, ("-l)^X'5Z £- (""OW 
V '.y=i , 

-77 max 
'.7=1 

4 î (»-"). 8(1+s) i 
>.7=1 

-7 max 
yv n m 

(i+^)2£4X£A ZK (" -|X+^ (* -Os* ), 
1.7=1 i=l e'=l 

N N M 

(1+5)2 £ 4 w; £ & £ (<?,. (n -1 ) w^' +5,.(/i-i)^') 
1,7=1 i=l »'=! 

Similarly, 

f N N ^ 

f,(")^f,("-l) + ?max £,(/i-l)^,s££,(n-1 )^g'j 
V '7=1 1.7=1 

-77 min 
'7=1 1.7=1 

-7 min 
N N M 

(1 + àf £ ̂ £A£(<?,.(«-!)<+ ("-l)s£), 
/,y=l â*l e'*l 

H N M 

(1 + B)2 £</>}gl£ a£K("-!)< + £< (n-1)*« ) 
1.7=1 t=l e'= 

et(n) > *, (n-1)+7 min x£ £) (n-1)^,b£ £, («-1)^ 
V './=* i.7=l 

-7 max 4'+4ÊAg;Â("-'M('+B)ÊW("-') 
'.7=1 1,7-1 
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-tj max 
N N M 

(1 + A)2 £ t jg; £&£(<?,. (n -!)<'+£e- {" -l)g,â ), 
t,J=l 4=1 c'a I 

AT S M 
(i+b) £#,*;£a£(*«.(»-1)w£+£,.(»-i)g,*') 

/,y=l 4=1 e'=l 
(5.74) 

Equations (5.71)-(5.74) indicate that the error in the estimates à and p are bounded if the 

measurement error are. 

• 

Corollary I: If A - 0 and B<k1, then 

6, (n) < 8, {n -!)+?/max f 0,B^E t  (n  - l)^X \- tj min 0,B^ «fttfjb, (n -1) 
V  ' • > « !  i.y« I 

AT S M 

- ?£ ̂ KEa£(^ ("-l)<+f,.(n- l)g,i ) 
»J*| *al c'»l 

( N \ ( N * ^ 
<?,(/i)££("-l)+7min 0,fiE£/(,z~1)^yK ~7max O.flE^yXM'1-1) 

v '.>=! y v '•>=' 

N N M 

- ?£ w£*£K ("-0 < 
/,y=i t*l e'-l 

(5.75) 

(5.76) 

£,(/i)<fe(/!-!) +7max O.^E -T/min 0,flj]^(/i-l) 
V '•7e| J V '.7=1 

-^E ̂ EAEK ("-•X +^- (« -Os* ) 
**l *'«l 

f N \ ( N * ^ 
sc(w)-£e{n~0 + 7min O.^EM"-1)^ -77 max O.^E^M"-1) 

v '•7=l y V '.7=1 

(5.77) 

AT N M 

-^£ ̂ E *£K ("-'X 
tj«t 4=1 c'*l 

(5.78) 
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Proof: Substitute A =  0 and B « 1 in (5.71)-(5.74), and eliminate all terms which are 

mul t ip l ied  by  B 2 .  

It is important to note that, if A =  B =  0  (no noise), then 8 e  («) = e t  (n)  = 0Vn and 

Theorem I confirms an important and intuitive fact: that the error in the estimates of 

the material properties at any iteration depends on the error in the material property estimates 

in all previous iterations. This dependence is shown explicitly in equations (5.64)-(5.67). 

This fact is not a drawback of the FENN-based inversion algorithm. Rather, it shows the ill-

posed nature of the inverse problem, and illustrates the point that the inversion results are 

only as good as the measured data. We addressed a similar issue in Chapters 3 and 4, where 

the error in the defect profile estimates from MFL signals was higher for shallow defects, 

when the percentage of additive noise was constant. In this case the depth information was 

carried in the amplitude of the MFL signal, and this information was corrupted by small 

amounts of noise. 

Equations (5.75)-(5.78) can be modified to give certain requirements for 

convergence. To see this, we first, rewrite (5.75) and (5.76) as 

• 

the estimates à  and /? indeed equal a  and p  (the estimates for the zero noise case). 

1,7=1 4=1 e'=l 

<<$,(«-!)+//max 0,2?££,(/i-1)^w; 
V '•/=' J V '•>=* 

(5.79) 
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N N M 
ô< (")+%Z {» -1)<+e.' {" ~ l)g'k ) 

t,j~\ *=1 e'=\ 

( n \ ( v - ^ 

>ô t(n-\) + Tjm\n 0,52]£,(«-1)^^ -7max °^Bzl^jw'A(n~l) 
X '•7=* ) V '/=* 

Similarly, 

N N M 

£
< ("WE ("-!)<+«•«• ("- Os* ) 

i.y=l t=l e'=l 

r " 
<f,(n-l)+7max 0,fl££•(/?-1)^; 

V» '.7=1 
-7 min 

X '7= 

(5.80) 

(5.81) 

A T  N U  

e< W+f/Z (w-0<+£f ("-0&*) 
1,7=1 *=1 <'=i 

>f,(n-l)+7min 0,fl££,(n-1)^ -7max 0,fl£^g,;6, (n-l) 
x '7=1 J V '.7=1 y 

Now, define the following terms: 

(5.82) 

^z(") = 7^E4(")^< 
'.>=1 

*3 =7Ë^,<ËA< 
',y=l *=l 

*4 (") = 7%^, < (") 
'.7=1 *=l 

^î( « ) = 2 X ( " k *  + f , ( " k *  
/,;=! *=l 15e'SA/,e'« 

(5.83) 

(5.84) 

(5.85) 

(5.86) 

(5.87) 

Also, let 
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m'n (O, Kt («)) (5.88) 

An(^2) = max(0,A:2(/i)) (5.89) 

i K i  )  =  m a x  (0, K x (n) )  (5.90) 

'„(*,) = min(0, *,(«)) (5.91) 

Then, from (5.79), we have 

^(«)+A:.(«-I)+*;(»-I)S )+$..,(AT,)-/„,(«:,) (;.<%) 

Similarly, from (5.80), we get 

£(n)+£«(n-l)+£5(n-l)> 6 t(n-\)(\-k3)+f „ _ , ( K ,  )  - ( K 2 )  ( 5 . 9 3 )  

Using the fact that <?, (0) = e t  (0) = 0, we get 

<?,(1)<50(*,)-/0(K2) (5.94) 

Substituting the upper limit for St (1) from (5.94), the upper limit for 8t (2) can be 

computed as 

<5.(2)+*,(l)+*,(l)s[>i(*l)-/,(X2)](l-iC1)+«i(A:,)-/(*,) (5.95) 

Similarly, 

<$.(3)+K4(2)+C,(2)S[$„(A:,)-/„(<, 

+5Î(^I)~/i(^Î) (5.96) 

The general term in the recursion for iteration n+1 can be shown to be 

tf.(»+i)+*.W+*.(»)sl[j,(A:,)-/,(*:1)](i-^r (5.97) 

Similarly, we can show that 

r-0 
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(5.98) 

Equations (5.97) and (5.98) give the upper and lower bounds on the error in a in element e. 

In order for the summation to converge, we require that 

If this condition is met, as the number of iterations increases (i.e., n -> œ ), the terms in the 

summation corresponding to small values of r are weighted less and less. However, the 

bounds are never zero. The only manner in which the bounds can be zero is if B = 0. Note 

that, if K3 = 1, there is still one non-zero term (corresponding to r = n). Now, Kx and K2 

depend on the weights (which in turn depend on the differential equation), source term, and 

the noise-free measurements and corresponding values of a and p. Thus, if K3 = 1, then the 

bounds on 5e at iteration n will depend on only the noise free parameters determined at 

iteration n-1, i.e., 

|1-*3 |<I (5.99) 

S t  (n +1)+K< (*) + K}  (») < ( K, ) - /„ ( K2 ) (5.100) 

t(*+i)+rX")+r,MaUr,)-W:) (5.101) 

Since 

N n 
(5.102) 

i,y=l t«l 

K,=\ if 

(5.103) 
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This value of tj is specific to element e. This result indicates that using different learning 

rates for different elements will result in a tighter error bound for the error in a. 

In a similar manner, we can estimate the error bounds for e .  Define: 

= (5.104) 
t , j - \  

C,(") = ̂ Z M")« (5.105) 

c,=?£#>,g;É#.s; (5106) 
'.y-i *«i 

C.(") = 7É#I,(5.107) 
'.7=1 *=• 

C5(") = 7ZtoZA X $•(")< + *«•(")&*' (5108) 
1,7=1 *=1 IStSA/.e'** 

Then, using (5.88)-(5.91), and the recursions of (5.77) and (5.78), the limits on et (n + l) are 

given by 

e,(»+l)+C4(n)+C,(n)££[î,(C,)-/,(C,)](l-C,)" (5.109) 
r=C 

£,(«+l)+C<(n)+Cs(n)S:2[',(C,)-^(C!)](l-C,r' (5.110) 
r=0 

The learning rate for et is then 

7-- ^ (S-'») 

I,7=I *«l 

Equations (5.103) and (5.111) indicate that the learning rate depends on the weights 

between the input and hidden layer, which in turn depend on the differential equation. These 
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weights can be pre-computed. However, the learning rate also depends on the error-free 

measurement ^. Since this quantity is unknown, the learning rate cannot be determined 

using (5.103) or (5.111), and a trial-and-error method must be used to determine the optimal 

learning rate. Alternatively, if several measurements are available, an average value of <j>j 

can be used to estimate tj. 

5.6. Results 

5.6.1. One Dimensional Problems - Forward Model Results 

The finite element model neural network (FENN) was tested using a one-dimensional 

version of Poisson s equation, which is a special case of (5.16): 

Several different examples based on (5.113) were used to test the performance of the FENN 

on the forward problem. The first problem that was tested was 

— V • (eV <f)= p (5.112) 

For a one-dimensional problem, this reduces to 

(5.113) 

§7=0, *e|o,i] (5.U4) 

with the boundary conditions 

0(0)=Oand4l)= k, ke{...,-3,-2,-1,1,23,...} (5.115) 

The analytical solution to this problem is 

Kx, x e [o,l] 
(5.116) 

0, elsewhere 
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The FENN was tested by setting e  =  \ , p = 0  and K=\. The domain of interest [o, l] was 

divided into ten elements (with eleven nodes) and the weights for the first layer of neurons 

were pre-computed. These weight values are well documented in the literature [8]. The 

results for this problem are shown in Figure 31. The solid line shows the analytical solution 

while the stars show the result determined by the FENN. Similar results for K- 5 are shown in 

Figure 32. These results were also obtained using ten elements and eleven nodes. 

09 

0.6 

07 

0.4 

0.2 0.3 0.4 0.6 0.7 0 6  0.9 

Figure 31. Comparison of analytical solution and FENN solution for Laplace's equation with K=l. 
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Figure 32. Comparison of analytical solution and FENN solution for Laplace's equation (K=S). 
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The second example that was tested was the one-dimensional Poisson's equation with 

e = 1 and p = -10 with the same boundary conditions as above: 

0(0)=0and <p{\)= K, Ke {...,-3,-2,-1,1,23,..-} (5.117) 

Again, the domain of interest was divided up into ten elements. The results for K-5 are 

shown in Figure 33. The analytical solution is shown using squares, while the FEM solution 

is shown using diamonds. The FENN result is shown using stars. The initial solution for the 

potential is indicated by the dashed line with triangles in the figure. The analytical solution 

for this problem is given by 

0 = {5x2' x6t0'1] (5.118) 
[0, elsewhere 

The results predicted by the FENN show excellent agreement with the analytical solution. 

Similarly, for p = 10 and K = 5, the analytical solution is 

0 = j"5*2 +10*, *e[0,l] (5.119) 
[0, elsewhere 

and a comparison of the analytical solution (squares), the FEM solution (diamonds) and 

FENN solution (stars) for this problem is shown in Figure 34. Again, the initial solution is 

indicated by the dashed line with the triangles. 

These results indicate that the FENN is capable of accurately solving for the potential 

<f>. The algorithm also converged in relatively few iterations (approximately 500 iterations on 

average for all four problems) and the sum-squared error over all the output nodes was less 

than 0.0001 for all four sets of results. 

As mentioned above, one advantage of the FENN approach is that the input-first 

hidden layer nodes can be computed once. These weights were used for all the four problems 
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described here. The only changes necessary to solve the different problems are changes in 

input (£) and the desired output (p). 

Campmson of wafytc. FEMNN end FEM solutions 
O Analytic • FBtfNN -r- FEM -u FBWW Mai 

I 25 — 

03 03 04 05 OS 07 08 09 
OnUKt 

Figure 33. Comparison of analytical, FEM and FENN solutions for Poisson s equation (/*=-10). 
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Figure 34. Comparison of analytical, FEM and FENN solutions for Poisson s equation (p=10). 
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5.6.2. One Dimensional Problems - Inverse Model Results 

The FENN was also used to solve several simple inverse problems based on 

Poisson's equation and Laplace's equation. In all cases, the objective was to determine the 

value of e for given values of p and The results of this exercise are summarized below. 

The first problem involves determining £ given p=1 and <f> = x, xe [o,l]. The 

analytical solution to this inverse problem is 

e  =  K - x ,  xe[o,l]and £eR (5.120) 

As seen from (5.120), this inverse problem, and all the others that follow, have an infinite 

number of solutions and we expect the solution procedure to converge to one of these 

solutions depending on the initialization. 

Figure 35 (a) and (b) show the two solutions to this inverse problem for two different 

initializations (shown using triangles): * = xandf = 1 + x respectively. The solution converges 

to s = 1 -xande = 2-x respectively and the FENN solution (in stars) is seen to match the 

analytical solution (squares) exactly. 

In order to further test the algorithm, the same problem was solved using four more 

initializations. The first two initialized £ to a constant value and the results are shown in 

Figure 36. Similarly, Figure 37 shows the results for a random initialization. In this case, the 

analytical result was obtained by drawing a straight line between the first and last values of £. 

Similar results are presented in Figure 38 for the inverse problem when 

p = -1 and^ = x, xe[o,l]. The analytical solution is 

e = K + x, xe[o,l]andATeR (5.121) 
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The FENN results indicate that the algorithm converges to e = xand e = \ + x for the 

initialization solutions e = \-xwâe=2-x respectively. 

(a) (b) 

Figure 35. FENN inversion results for Poisson s equation with (a) initial solution £=x and (b) initial 
solution «=1+*. 

(a) 

Figure 36. Inversion result for Poisson s equation with initial solution (a) 6=0.5 (b) e=l. 
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Figure 37. Inversion result for Poisson's equation with (a) random initialization 1 (b) random 

initialization 2. 

(b) (a) 

Figure 38. FENN inversion results for Poisson's equation with initial solution (a) £=l-x (b) f =2-x. 

(a) (b) 

Figure 39. FENN inversion results for Laplace's equation with initialization (a) £=x (b) ̂ 1+x. 
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The third example of the inverse problem that was used to test the algorithm was 

Laplace's equation with p=Q and <t> = x, x e [o,l]. The analytical solution is 

s = K, x G [O,l]and ATeR . Again, the results (Figure 39) show that the FENN solution 

matches the analytical solution and the exact solution to which the algorithm converges 

depends on the initialization. 

The results presented for the inverse problem indicate that the solution is not unique 

and depends on the initialization. In order to obtain a unique solution, we need to impose 

constraints. For the second order differential equation (5.113), we need to constrain the value 

of cat a known node on the sample in order to obtain a unique solution. This is usually 

possible to assign in practice. For instance, in electromagnetic NDE, we know the material 

properties at the boundary and this information can be used as the "ground truth" to constrain 

the solution. This constraint can be easily applied to the FENN by clamping the 

corresponding input nodes and not changing their values during the iterative inversion 

process. 

This approach was applied to determine e  everywhere given that ^and/are specified 

as follows in (5.113): 

0 = x 2 ,  x  € [o,l] (5.122) 

and 

/ = -2K - 2sin(x)- 2xcos(x), K e R (5.123) 

The analytical solution for this equation is 

£ = sin(x)+Â" (5.124) 

To solve this problem, we set K = 1 and clamp the value of fat x = 0: 
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c(x = 0)=A: (5.125) 

The results of the inversion are shown in Figure 40-Figure 43. Figure 40 shows the 

comparison between the analytical solution (solid line with squares) and the FENN result 

(solid line with stars). The initial value of e was selected randomly and is shown in the figure 

as a dashed line. This result was obtained using 11 nodes and 10 elements in the 

corresponding finite element mesh. Figure 41 shows the error in the forcing function/at the 

FENN output. The squares indicate the desired value off while the circles show the actual 

network output. This result indicates that, though the error in the forcing function is small, 

the error in the inversion result is fairly large. Similar results for 21 nodes (20 elements) in 

the mesh are shown in Figure 42 and Figure 43. It is seen that increasing the discretization 

significantly improves the solution. It should also be noted that the FENN inversion 

algorithm for 21 nodes has not converged to the desired error goal (as seen from Figure 43), 

and a larger number of iterations are necessary to further improve the solution. 

Nrwi<Ma 

o oi e: ci o« os o* or ci *$ • 

Figure 40. Constrained inversion result with eleven nodes. 
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Figure 41. Error in the forcing function for an eleven node discretization. 

Figure 42. Constrained inversion results for a 21 node discretization. 
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Figure 43. Error in the forcing function for a 21 node discretization. 

5.63. Forward And Inverse Problems In Two Dimensions 

The general form of Poisson s equation in two dimensions is 

djf d£ 
cbc( ,  x  dx)  dy  

with boundary conditions 

^ = p on r, 

and 

dj  .x 

(5.126) 

(5.127) 

a -* x + a >% y j  
• ft+y<f> = q on f2 (5.128) 

Several forward and inverse problem examples based on (5.126) were solved using the 

FENN algorithm. These are: 
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I. Problem I used a x =a y =a = x+y,  (x,.y)e[0,l]x[0,l], f i  =  y  = q  = 0  and/ = -2.The 

analytical solution to the forward problem is # = x+y when the Dirichiet boundary 

conditions are 

<f> = y, x = 0 

0 = 1+y, x = I 

(f>-x, y = 0 

<!> — \ + x, y = l (5.129) 

Conversely, the inverse problem in this case is to estimate a in each element {fi = 0) 

given the potentials $ = x+y at each of the nodes. 

Figure 44 shows the solution to the forward problem as a surface plot of $, with 

Figure 44 (a) showing the analytical solution, Figure 44 (b) showing the FEM solution and 

the FENN solution in Figure 44 (c). The error between the FENN solution and the analytical 

solution is presented in Figure 44 (d). These results were obtained using a discretization of 11 

nodes in each direction with triangular elements (a total of 121 nodes and 200 elements). The 

values of a and fi were constant in each element and were set to their average values within 

each element. These results indicate that the FENN forward problem solution for a two-

dimensional problem is comparable to the FEM solution. The error between the FENN 

solution and the analytical solution is also seen to be on the order of 10"7. 

The inverse problem solution is presented in Figure 45, with the analytical solution 

for a, the FENN inversion and the error between the analytical and FENN results in Figure 

45 (a), (b) and (c) respectively. Several different discretizations were tested for solving the 

inverse problem, and the results presented here were obtained using 11 nodes in each 
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direction. Results obtained from a different discretization (5 nodes in each direction) are 

presented in Figure 46. The discretization was observed to affect the number of iterations 

needed for convergence, with the smaller mesh requiring a smaller number of iterations. 

Also, all the inverse problem solutions presented for this and other two-dimensional 

problems were obtained by constraining the material properties at the boundaries as 

mentioned in the section on one-dimensional inverse problems. The constraints were 

obtained from the definition of ax ,ay and /? for each of the problems. 

(a) (b) 

(c) (d) 

Figure 44. Solution of forward problem for Problem I (a) Analytical (b) FEM (c) FENN (d) error between 

(a) and (c). 
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(c) 

Figure 45. Inverse problem solution for Problem I with an 11x11 discretization (a) Analytical value of a 

(b) FENN inversion (c) Error between (a) and (b). 
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(c) 

Figure 46. Inversion results for Problem I with a 5x5 mesh (a) Analytical value of aÇb) FENN inversion 

(c) Error between (a) and (b). 



www.manaraa.com

91 

2. Problem II used a x=a y=a = x+y, (x,y)€[0,l]x[0,l], f i  = y = q = 0 

and/ = -6(x+>>). The analytical solution to the forward problem is # = x z+y2  when 

the Dirichlet boundary conditions are 

<f> = y2, x = 0 

<f> = \+y2 ,  x = 1 

t = x2, y = 0 

<f> = \ + x\ y = 1 (5.130) 

Conversely, the inverse problem in this case is to estimate a in each element given the 

potentials <f> = x2 + y2 at each of the nodes. 

Figure 47 presents the solution to the forward problem as surface plots of , with Figure 

47 (a) showing the analytical solution, Figure 47 (b) showing the FEM solution and Figure 

47 (c) showing the FENN solution. The error between the analytical solution and the FENN 

solution is presented in Figure 47 (d). Again, the results for the forward problem were 

obtained using a discretization of 11 nodes in each direction with triangular elements. The 

results again indicate that the FENN and FEM solutions are similar, even though the error 

between the FENN and analytical solutions is high. 

The inverse problem solution is presented in Figure 48, with Figure 48 (a), (b) and (c) 

showing analytical solution for a, the FENN inversion result and the error in the FENN 

inversion respectively. As in Problem I, several discretizations were used for solving the 

inverse problem, and the results presented in Figure 48 were obtained using 11 nodes in each 

direction. 
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3. Problem III used a x  = y, a y=x, (x,.y)e[0,l]x[0,l], f i  = y = q=0 and f  = -2(x+y).  

The analytical solution to the forward problem is <f> = x2  +y2  when the Dirichlet 

boundary conditions are 

# = y2,x = 0 

<p = 1 + y z ,  x = 1 

<f> = x2, y = 0 

^ = l+x2, y = l (5.131) 

Conversely, the inverse problem in this case is to estimate a x  and a y  in each element given 

the potentials ^ = x2  + y2  at each of the nodes. 

Figure 49 presents the solution ^ for Problem III, with the analytical solution in 

Figure 49 (a), the FEM solution in Figure 49 (b), the FENN solution in Figure 49 (c) and the 

error between the analytical and FENN solutions in Figure 49 (d). As in the previous 

examples, the results for the forward problem were obtained using a discretization of 11 

nodes in each direction with triangular elements The inverse problem solution is presented in 

Figure 50, with Figure 50 (a), (b) and (c) showing the analytical solution, the FENN 

inversion and the error in the FENN inversion for or,. Similar results for ay are shown in 

Figure 51 (a), (b) and (c) respectively. As in the previous two examples, several 

discretizations were tried out for solving the inverse problem, and the results presented in 

Figure 50- Figure 51 were obtained using 11 nodes in each direction. Again, it was observed 

that the greater the discretization, the better the inverse problem solution. 
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(c) (d) 

Figure 47. Forward problem solutions for Problem H (a) Analytical) (b) FEM (c) FENN. 
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(c) 

Figure 48. Inversion results for Problem II with an 11x11 mesh (a) Analytical value of a(b) FENN 

inversion (c) Error between (a) and (b). 
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(c) (d) 

Figure 49. Solution for 0 (Problem III) (a) Analytical (b) FEM (c) FENN (d) error between (a) and (c). 
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(c) 

Figure 50. Inversion results for Problem HI, % with an 11x11 mesh (a) Analytical value (b) FENN 

inversion (c) Error between (a) and (b). 



www.manaraa.com

97 

(c) 

Figure SI. Inversion results for Problem m, a, with an 11x11 mesh (a) Analytical value (b) FENN 

inversion (c) Error between (a) and (b). 
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4. Problem IV - Shielded microstrip transmission line: The forward problem is to compute 

the electric potential due to the shielded microstrip shown in Figure 52 (a). The potentials 

are zero on the shielding conductor. Since the geometry is symmetric, we can solve the 

equivalent problem shown in Figure 52 (b), by applying the homogeneous Neumann 

condition on the plane of symmetry. Accordingly, p = y = q = 0. The inner conductor 

(microstrip) is held at a constant potential of V volts. We also assume that the material 

inside the shielding conductor has a permittivity ax = ay = e = K, where K is a constant. 

The corresponding inverse problem is to determine the permittivity everywhere inside the 

shielding conductor given the potential value everywhere. 

The solution to the forward problem is presented in Figure 53, with the FEM solution 

using 11 nodes in each direction shown in Figure 53 (a) and the corresponding FENN 

solution in Figure 53 (b). The potential of the microstrip in the forward and inverse problem 

was set to 10 volts and the permittivity of the medium was s = I. The error between the FEM 

and FENN solutions is presented in Figure 53 (c). Again, the FENN is seen to match the 

FEM solution accurately. Results of applying the FENN to solve the inverse problem are 

shown in Figure 54, with Figure 54 (a), (b) and (c) showing the true solution, the FENN 

prediction, and the error between the two, respectively. 



www.manaraa.com

99 

Ô4> 

ôn 

0=0 
=05 

'wâÈ 

(a) (b) 

Figure 52. Shielded microstrip geometry (a) complete problem description (b) problem description using 

symmetry considerations. 

All the results presented here indicate that the proposed FENN algorithm is capable 

of accurately solving both the forward and inverse problems. In addition, the forward 

problem solution from the FENN is seen to exactly match the FEM solution, indicating that 

the FENN represents the finite element model exactly in a parallel configuration. However, 

the result of the inversion process depends on the discretization. In general, increasing the 

number of elements improves the inversion results at the cost of increasing the number of 

iterations necessary for convergence. In addition, the convergence time was seen to also 

depend on the initialization. Most of the results presented in this thesis were obtained using a 

random initialization for the parameter of interest. 

The simulations also showed that the forward problem solutions depend on the 

discretization, with better results obtained using a higher discretization. Furthermore, the 

results presented here indicate that the algorithm for inversion may oscillate as it approaches 

the solution. This issue can be addressed by either using a more sophisticated optimization 

algorithm (for instance, conjugate gradient or genetic algorithms), or by adding additional 

regularization constraints to the problem, or a combination of both. 
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The FENN offers several advantages over conventional neural network based 

inversion. A major advantage of the FENN forward model is that it does not require any 

training. Further, the FENN can correctly predict the measurement signal for any defect 

profile, thus solving the problem of extrapolation. In addition, the FENN structure enables 

most computations, including gradient computation, to take place in parallel, speeding up the 

solution process significantly. Sensitivity analysis for the inverse problem also indicates that 

the network will converge to a solution close to the true solution whenever the SNR is high. 

(a) (b) 
hwrliiwfiiiCWW 

(C) 

Figure 53. Forward problem solutions for shielded microstrip problem (a) FEM (b) FENN (c) error 

between (a) and (b). 
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Figure 54. Inversion result for a shielded microstrip (a) True solution for <r(b) FENN inversion (c) error 

between (a) and (b). 
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6. CONCLUSIONS AND FUTURE WORK 

This study proposed the use of neural network based forward models in iterative 

algorithms for inversion of NDE signals. The use of neural network based forward models 

offers several advantages over numerical models in terms of both implementation of gradient 

calculations in the updates of the defect profiles and overall computational cost. Two 

different types of neural networks - radial basis function neural networks and wavelet basis 

function neural networks - were initially used to represent the forward model. These forward 

models were used, in a simple iterative scheme, or in combination with an inverse model in 

feedback configuration, to solve the inverse problem. The results presented on inversion of 

MFL data indicate that these algorithms are capable of accurately solving the inverse 

problem with a relatively low computational effort, even in the presence of noise. The results 

obtained with the feedback neural network configuration also indicate that this approach can 

provide a measure of confidence in its prediction. This feature is especially useful when the 

inversion process must be performed in the presence of noise. 

One drawback of these approaches is that the forward models are not accurate when 

the input signals are not similar to those used in the training database. This thesis proposed 

the design of neural networks that are capable of solving differential equations and hence 

does not depend on training data. This specialized neural network - the finite element model 

neural network (FENN) - has a weight structure that allows both the forward and inverse 

problems to be solved using simple gradient-based algorithms. Initial results of applying the 

FENN to one- and two-dimensional problems were presented and show that the proposed 

FENN accurately models the forward problem. Application of this neural network for inverse 

problem solutions indicates that the solution closely matches the analytical solution. The 



www.manaraa.com

103 

structure of the FENN also allows easy application of constraints on the inverse problem 

solution, in the form of clamped input nodes. In addition, the FENN is easily amenable to 

parallel implementation, in both hardware and software. An analysis of the sensitivity of the 

FENN to measurement noise indicates that the corresponding inversion result is bounded if 

the measurement error is bounded. Under typical conditions, where the SNR is high, the error 

in the inverse problem solution is fairly small, and goes to zero as the noise goes to zero. 

Future work will concentrate on extending the FENN to three-dimensional 

electromagnetic NDE problems. One advantage of the FENN is that it can be used as the 

forward model in both the neural network inversion approach (Approach I) and the feedback 

neural network approach (Approach II), with very little change in the algorithm. Results of 

applying the FENN in Approach I have been shown in Section 5. Its use in Approach II will 

be investigated. Furthermore, all the approaches use simple gradient-based methods in the 

optimization process. The use of better optimization algorithms, such as conjugate gradient 

methods, can improve the solution speed even further. 

An alternative approach to deriving specialized neural networks involves the solution 

of the integral equations that describe the physical process (as opposed to the differential 

equations that were used to derive the FENN). The feasibility of this network, called the 

Green's function neural network (GFNN), and its application to electromagnetic NDE will 

also be investigated. 

The approaches described in this proposal are very general in that they can be applied 

to a variety of inverse problems in fields other than electromagnetic NDE. Some of these 

other applications will also be investigated to show the general nature of the proposed 

methods. 
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APPENDIX. MAGNETIC FLUX LEAKAGE METHODS 

The magnetic flux leakage method, frequently used in the inspection of ferromagnetic 

materials, employs permanent magnets or currents to magnetize the sample and a set of flux-

sensitive sensors to record the leakage flux for analysis. 

Leakage flux arises because the presence of a defect causes an increase in magnetic 

flux density in the vicinity of the flaw. This causes a shift in the operating point on the 

hysteresis curve and a corresponding decrease of local permeability, resulting in a leakage of 

flux into the surrounding medium (air) [35]. The leakage flux is recorded using either hall 

probes or a coil. 

The governing equations for magnetic flux leakage can be derived from the static 

form of Maxwell's equations. Considering only source-free regions of the material, we have 

[36] 

V x H = 0  ( A - l )  

V *B = 0 (A-2) 

where H is the magnetic field strength and B is the magnetic flux density. Therefore, the 

magnetic field strength H can be represented by the gradient of a magnetic scalar potential U: 

H = -VU (A-3) 

Substituting back in (A-2), and assuming the region is homogeneous and isotropic, we get 

Laplace's equation 

v 2 u  = 0  (A-4) 

Although analytical models involving the corresponding Green's function provide exact 

solutions to the problem, solution of the forward problem in the case of realistic inspection 

geometries with complex defect shapes necessitates the use of numerical techniques such as a 
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finite difference or finite element model (FEM) [6,7, 8] where the models predict all three 

components of the magnetic leakage flux density B as a function of spatial location. 
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